H∞-control for descriptor systems - A structured matrix pencils approach

The H∞ control problem is studied for linear constant coefficient descriptor systems. Necessary and sufficient optimality conditions are derived in terms of deflating subspaces of even matrix pencils for problems of arbitrary index. It is shown that this approach leads to a more robust method in computing the optimal value γin contrast to other methods such as the widely used Riccati or LMI based approaches. The results are illustrated by a numerical example.

[1]  Frank Allgöwer,et al.  H∞ control of descriptor systems with high index , 1999 .

[2]  Michael Günther,et al.  Modelling and discretization of circuit problems , 2005 .

[3]  Peter Benner,et al.  Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..

[4]  F. R. Gantmakher The Theory of Matrices , 1984 .

[5]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[6]  Peter Benner,et al.  A robust numerical method for the γ-iteration in H∞ control , 2007 .

[7]  F. Allgöwer,et al.  H∞-control of differential-algebraic-equation systems , 1998 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  Peter Benner,et al.  A Robust Numerical Method for Optimal H∞ Control , 2004 .

[10]  P. Rentrop,et al.  Differential-Algebraic Equations , 2006 .

[11]  Kiyotsugu Takaba,et al.  H/sub /spl infin// control for descriptor systems-a J-spectral factorization approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[12]  Venkataramanan Balakrishnan,et al.  Semidefinite programming duality and linear time-invariant systems , 2003, IEEE Trans. Autom. Control..

[13]  K. Takaba,et al.  H_∞ control for descriptor systems:A J-spectral factorization approach , 1994 .

[14]  V. Mehrmann,et al.  A robust numerical method for optimal H/sub /spl infin// control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[15]  Hilding Elmqvist,et al.  Multi-Domaiin Modeling with Modelica , 2007 .

[16]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[17]  R. Chiang,et al.  Robust control toolbox , 1996 .

[18]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[19]  E. de Klerk,et al.  Interior Point Methods for Semidefinite Programming , 1997 .

[20]  Sabine Van Huffel,et al.  SLICOT—A Subroutine Library in Systems and Control Theory , 1999 .

[21]  P. C. Müller,et al.  Control Analysis and Synthesis of Linear Mechanical Descriptor Systems , 1993 .

[22]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[23]  Volker Mehrmann,et al.  Analysis and Numerical Solution of Control Problems in Descriptor Form , 2001, Math. Control. Signals Syst..

[24]  F. Allgöwer,et al.  An LMI Approach Towards H∞ Control of Descriptor Systems , 2000 .

[25]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .