Analysis of Linear Methods for Robust Identification in ℓ 1

Abstract Worst-case analysis of system identification by means of the linear algorithms such as least squares is considered. Estimates for worst-case and average errors are provided, showing that worst-case robust convergence cannot occur in the l 1 identification problem. The case of periodic inputs is also analysed. Finally pseu-dorandomness assumptions are introduced which allow more powerful convergence results in a deterministic framework.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  Jonathan R. Partington,et al.  Interpolation in Normed Spaces from the Values of Linear Functionals , 1994 .

[3]  Pramod Khargonekar,et al.  A Time-Domain Approach to Model Validation , 1992, 1992 American Control Conference.

[4]  C. Jacobson,et al.  Worst case system identification in l 1 ne-equation> 1 : optimal algorithms and error bounds , 1992 .

[5]  P. Mäkilä,et al.  Worst-case analysis of the least-squares method and related identification methods , 1995 .

[6]  K. Poolla,et al.  On the time complexity of worst-case system identification , 1994, IEEE Trans. Autom. Control..

[7]  J. Tsitsiklis,et al.  Optimal asymptotic identification under bounded disturbances , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[8]  Jonathan R. Partington,et al.  Worst-case identification in e 2 : linear and nonlinear algorithms , 1994 .

[9]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[10]  J. Partington Robust identification in H , 1992 .

[11]  Pramod P. Khargonekar,et al.  The least squares algorithm, parametric system identification and bounded noise , 1993, Autom..

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  P. Mäkilä Robust identification and Galois sequences , 1991 .

[14]  John Doyle,et al.  Model validation: a connection between robust control and identification , 1992 .

[15]  Håkan Hjalmarsson,et al.  Aspects on Incomplete Modeling in System Identification , 1993 .

[16]  J. Tsitsiklis,et al.  The sample complexity of worst-case identification of FIR linear systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[17]  Mario Milanese,et al.  Properties of least squares estimates in set membership identification, , 1995, Autom..