Genomics and Genetic Enhancement of Peanut

Cultivated peanut, also known as groundnut (Arachis hypogaea L.), is grown on 25.5 million hectares between latitudes 40" Nand 40° S with a total global production of 35 million Ions (MOO). Peanuts originated in South America; however, the vast majority of peanut is produced in Asia (66.8%: 23.4 Mt) /lndia Africa (24.6%: 8.6 MI). The remaining 8,6% (3 Mt) comes from North America, the Caribbean, Europe, and Oceania

[1]  S. Wessler,et al.  Efficient capture of unique sequences from eukaryotic genomes. , 2002, Trends in genetics : TIG.

[2]  Daniel G Peterson,et al.  Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. , 2002, Genome research.

[3]  E. Nevo,et al.  Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare) , 2002, Plant Molecular Biology.

[4]  A. Paterson,et al.  Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. , 2001, Genetics.

[5]  G. He,et al.  Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers , 2001, Genetic Resources and Crop Evolution.

[6]  S. N. Nigam,et al.  Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis , 2001 .

[7]  H. T. Stalker,et al.  Molecular Markers of Arachis and Marker-Assisted Selection , 2001 .

[8]  D. Gorbet,et al.  Use of Plant Introductions in Peanut Cultivar Development , 2001 .

[9]  H. Upadhyaya,et al.  Status of the Arachis Germplasm Collection at ICRISAT , 2001 .

[10]  J. Starr,et al.  Registration of `COAN' Peanut , 2001 .

[11]  M. Daly,et al.  A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms , 2001, Nature.

[12]  D. Soltis,et al.  The role of genetic and genomic attributes in the success of polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Kwok,et al.  Single nucleotide polymorphism libraries: why and how are we building them? , 1999, Molecular medicine today.

[14]  Sharon E. Mitchell,et al.  Discovery and Characterization of Polymorphic Simple Sequence Repeats (SSRs) in Peanut , 1999 .

[15]  L. Talbert,et al.  Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat , 1999, Theoretical and Applied Genetics.

[16]  D. Fischer,et al.  Microsatellite enrichment in organisms with large genomes (Allium cepa L.). , 1998, BioTechniques.

[17]  Leonid Kruglyak,et al.  The use of a genetic map of biallelic markers in linkage studies , 1997, Nature Genetics.

[18]  Charles E. Simpson,et al.  Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance , 1996, Molecular Breeding.

[19]  H. T. Stalker,et al.  Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. , 1996, Genome.

[20]  K. Singh,et al.  Variation in chromosomal DNA associated with the evolution of Arachis species. , 1996, Genome.

[21]  H. T. Stalker,et al.  Genetic diversity within the species Arachis duranensis Krapov. &W.C. Gregory, a possible progenitor of cultivated peanut. , 1995, Genome.

[22]  F. Cellini,et al.  Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. , 1995, Nucleic acids research.

[23]  H. T. Stalker,et al.  Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. , 1995, Genome.

[24]  H. T. Stalker,et al.  Development of an RFLP linkage map in diploid peanut species , 1993, Theoretical and Applied Genetics.

[25]  Charles E. Simpson,et al.  Registration of TxAG-6 and TxAG-7 peanut germplasm , 1993 .

[26]  J. P. Moss,et al.  Detection of polymorphic loci in Arachis germplasm using random amplified polymorphic DNAs. , 1992, Genome.

[27]  D. Knauft,et al.  Restriction fragment length polymorphism evaluation of six peanut species within the Avachis section , 1992, Theoretical and Applied Genetics.

[28]  H. T. Stalker,et al.  Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species , 1991 .

[29]  C. Simpson,et al.  RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species , 1991, Theoretical and Applied Genetics.

[30]  J. C. Wynne,et al.  Genetic Improvement in Large-Seeded Virginia-Type Peanut Cultivars since 1944 1 , 1987 .

[31]  J. C. Wynne,et al.  Recurrent Selection Within a Population from an Interspecific Peanut Cross 1 , 1986 .

[32]  J. P. Moss,et al.  Utilization of wild relatives in genetic improvement of Arachis hypogaea L. , 1982, Theoretical and Applied Genetics.

[33]  A. Rake,et al.  Reassociation Kinetics and Cytophotometric Characterization of Peanut (Arachis hypogaea L.) DNA. , 1980, Plant physiology.

[34]  J. Smartt,et al.  The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors , 1978, Euphytica.

[35]  J. Smartt,et al.  The genomes of Arachis hypogaea 2. The implications in interspecific breeding , 1978, Euphytica.

[36]  J. Smartt Makulu red—A ‘Green Revolution’ groundnut variety? , 1978, Euphytica.

[37]  K. Boote,et al.  Physiological Aspects of Peanut Yield Improvement 1 , 1978 .

[38]  L. Husted Cytological Studies an the Peanut, Arachis. II , 1933 .

[39]  S. N. Nigam,et al.  Molecular breeding of groundnut for enhanced productivity and food security in the semi- arid tropics: opportunities and challenges , 2003 .

[40]  H. T. Stalker,et al.  Reproductive Efficiency in Reciprocal Crosses of Arachis monticola with A. hypogaea Subspecies1 , 1998 .

[41]  D. Nickerson,et al.  Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. , 1996, Genomics.

[42]  J. C. Wynne,et al.  Peanut Breeding and Genetics , 1995 .

[43]  J. Keenan,et al.  The composition and nutritive value of groundnut kernels , 1994 .

[44]  C. Simpson Pathways for Introgression of Pest Resistance into Arachis hypogaea L.1 , 1991 .

[45]  J. C. Wynne,et al.  Cytogenetics and genetics of arachis , 1989 .