Genomics and Genetic Enhancement of Peanut
暂无分享,去创建一个
H. T. Stalker | A. Paterson | E. Mace | J. Crouch | S. Dwivedi | M. Burow | M. Meagher
[1] S. Wessler,et al. Efficient capture of unique sequences from eukaryotic genomes. , 2002, Trends in genetics : TIG.
[2] Daniel G Peterson,et al. Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. , 2002, Genome research.
[3] E. Nevo,et al. Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare) , 2002, Plant Molecular Biology.
[4] A. Paterson,et al. Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.). broadening the gene pool of a monophyletic polyploid species. , 2001, Genetics.
[5] G. He,et al. Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers , 2001, Genetic Resources and Crop Evolution.
[6] S. N. Nigam,et al. Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis , 2001 .
[7] H. T. Stalker,et al. Molecular Markers of Arachis and Marker-Assisted Selection , 2001 .
[8] D. Gorbet,et al. Use of Plant Introductions in Peanut Cultivar Development , 2001 .
[9] H. Upadhyaya,et al. Status of the Arachis Germplasm Collection at ICRISAT , 2001 .
[10] J. Starr,et al. Registration of `COAN' Peanut , 2001 .
[11] M. Daly,et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms , 2001, Nature.
[12] D. Soltis,et al. The role of genetic and genomic attributes in the success of polyploids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[13] P. Kwok,et al. Single nucleotide polymorphism libraries: why and how are we building them? , 1999, Molecular medicine today.
[14] Sharon E. Mitchell,et al. Discovery and Characterization of Polymorphic Simple Sequence Repeats (SSRs) in Peanut , 1999 .
[15] L. Talbert,et al. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat , 1999, Theoretical and Applied Genetics.
[16] D. Fischer,et al. Microsatellite enrichment in organisms with large genomes (Allium cepa L.). , 1998, BioTechniques.
[17] Leonid Kruglyak,et al. The use of a genetic map of biallelic markers in linkage studies , 1997, Nature Genetics.
[18] Charles E. Simpson,et al. Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance , 1996, Molecular Breeding.
[19] H. T. Stalker,et al. Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. , 1996, Genome.
[20] K. Singh,et al. Variation in chromosomal DNA associated with the evolution of Arachis species. , 1996, Genome.
[21] H. T. Stalker,et al. Genetic diversity within the species Arachis duranensis Krapov. &W.C. Gregory, a possible progenitor of cultivated peanut. , 1995, Genome.
[22] F. Cellini,et al. Random amplified hybridization microsatellites (RAHM): isolation of a new class of microsatellite-containing DNA clones. , 1995, Nucleic acids research.
[23] H. T. Stalker,et al. Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. , 1995, Genome.
[24] H. T. Stalker,et al. Development of an RFLP linkage map in diploid peanut species , 1993, Theoretical and Applied Genetics.
[25] Charles E. Simpson,et al. Registration of TxAG-6 and TxAG-7 peanut germplasm , 1993 .
[26] J. P. Moss,et al. Detection of polymorphic loci in Arachis germplasm using random amplified polymorphic DNAs. , 1992, Genome.
[27] D. Knauft,et al. Restriction fragment length polymorphism evaluation of six peanut species within the Avachis section , 1992, Theoretical and Applied Genetics.
[28] H. T. Stalker,et al. Genetic variation detectable with molecular markers among unadapted germ-plasm resources of cultivated peanut and related wild species , 1991 .
[29] C. Simpson,et al. RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species , 1991, Theoretical and Applied Genetics.
[30] J. C. Wynne,et al. Genetic Improvement in Large-Seeded Virginia-Type Peanut Cultivars since 1944 1 , 1987 .
[31] J. C. Wynne,et al. Recurrent Selection Within a Population from an Interspecific Peanut Cross 1 , 1986 .
[32] J. P. Moss,et al. Utilization of wild relatives in genetic improvement of Arachis hypogaea L. , 1982, Theoretical and Applied Genetics.
[33] A. Rake,et al. Reassociation Kinetics and Cytophotometric Characterization of Peanut (Arachis hypogaea L.) DNA. , 1980, Plant physiology.
[34] J. Smartt,et al. The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors , 1978, Euphytica.
[35] J. Smartt,et al. The genomes of Arachis hypogaea 2. The implications in interspecific breeding , 1978, Euphytica.
[36] J. Smartt. Makulu red—A ‘Green Revolution’ groundnut variety? , 1978, Euphytica.
[37] K. Boote,et al. Physiological Aspects of Peanut Yield Improvement 1 , 1978 .
[38] L. Husted. Cytological Studies an the Peanut, Arachis. II , 1933 .
[39] S. N. Nigam,et al. Molecular breeding of groundnut for enhanced productivity and food security in the semi- arid tropics: opportunities and challenges , 2003 .
[40] H. T. Stalker,et al. Reproductive Efficiency in Reciprocal Crosses of Arachis monticola with A. hypogaea Subspecies1 , 1998 .
[41] D. Nickerson,et al. Increasing the information content of STS-based genome maps: identifying polymorphisms in mapped STSs. , 1996, Genomics.
[42] J. C. Wynne,et al. Peanut Breeding and Genetics , 1995 .
[43] J. Keenan,et al. The composition and nutritive value of groundnut kernels , 1994 .
[44] C. Simpson. Pathways for Introgression of Pest Resistance into Arachis hypogaea L.1 , 1991 .
[45] J. C. Wynne,et al. Cytogenetics and genetics of arachis , 1989 .