A global-scale framework for hydropower development incorporating strict environmental constraints

[1]  H. S. Matthews,et al.  Potential hydropower contribution to mitigate climate risk and build resilience in Africa , 2022, Nature Climate Change.

[2]  Xixi Lu,et al.  High Mountain Asia hydropower systems threatened by climate-driven landscape instability , 2022, Nature Geoscience.

[3]  Y. Sheng,et al.  GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations , 2022, Earth System Science Data.

[4]  R. Wiser,et al.  Solar and wind grid system value in the United States: The effect of transmission congestion, generation profiles, and curtailment , 2021, Joule.

[5]  D. Bastviken,et al.  How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia , 2021, Science Advances.

[6]  I. S. Sen,et al.  Preparing for floods on the Third Pole , 2021, Science.

[7]  B. Menounos,et al.  Accelerated global glacier mass loss in the early twenty-first century , 2021, Nature.

[8]  Yuyu Zhou,et al.  Insights for Canadian electricity generation planning from an integrated assessment model: Should we be more cautious about hydropower cost overruns? , 2021 .

[9]  A. Blakers,et al.  Global Atlas of Closed-Loop Pumped Hydro Energy Storage , 2021 .

[10]  A. Castelletti,et al.  More than one million barriers fragment Europe’s rivers , 2020, Nature.

[11]  Atul K. Jain,et al.  Global Carbon Budget 2020 , 2020, Earth System Science Data.

[12]  K. Riahi,et al.  Global resource potential of seasonal pumped hydropower storage for energy and water storage , 2020, Nature Communications.

[13]  J. Ni,et al.  River dam impacts on biogeochemical cycling , 2020, Nature Reviews Earth & Environment.

[14]  Mark Mulligan,et al.  GOODD, a global dataset of more than 38,000 georeferenced dams , 2020, Scientific Data.

[15]  Tyler J. Lark,et al.  Harmonized global maps of above and belowground biomass carbon density in the year 2010 , 2019, Scientific Data.

[16]  Vanessa Round,et al.  Large hydropower and water-storage potential in future glacier-free basins , 2019, Nature.

[17]  Hamish D. Pritchard,et al.  Asia’s shrinking glaciers protect large populations from drought stress , 2019, Nature.

[18]  Dolf Gielen,et al.  The role of renewable energy in the global energy transformation , 2019, Energy Strategy Reviews.

[19]  B. Fekete,et al.  Status, trends and significance of American hydropower in the changing energy landscape , 2019, Renewable and Sustainable Energy Reviews.

[20]  E. Moran,et al.  Sustainable hydropower in the 21st century , 2018, Proceedings of the National Academy of Sciences.

[21]  M. Hansen,et al.  Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia , 2018, Environmental Research Letters.

[22]  Q. Schiermeier Europe is demolishing its dams to restore ecosystems , 2018, Nature.

[23]  Matti Kummu,et al.  Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015 , 2018, Scientific Data.

[24]  J. Best,et al.  Anthropogenic stresses on the world’s big rivers , 2018, Nature Geoscience.

[25]  J. Holden,et al.  PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis , 2018 .

[26]  J. Olden,et al.  Can dams be designed for sustainability? , 2017, Science.

[27]  David E.H.J. Gernaat,et al.  High-resolution assessment of global technical and economic hydropower potential , 2017 .

[28]  Mark Z. Jacobson,et al.  100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World , 2017 .

[29]  B. Flyvbjerg,et al.  Damming the rivers of the Amazon basin , 2017, Nature.

[30]  N. C. van de Giesen,et al.  Systematic high-resolution assessment of global hydropower potential , 2017, PloS one.

[31]  J. Schmidt,et al.  How dams can go with the flow , 2016, Science.

[32]  M. Huss,et al.  From dwindling ice to headwater lakes: could dams replace glaciers in the European Alps? , 2016 .

[33]  J. Lundberg,et al.  Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong , 2016, Science.

[34]  M. A. Cameron,et al.  Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes , 2015, Proceedings of the National Academy of Sciences.

[35]  Luai M. Al-Hadhrami,et al.  Pumped hydro energy storage system: A technological review , 2015 .

[36]  Pavel Kabat,et al.  Accounting for environmental flow requirements in global water assessments , 2013 .

[37]  Mark Z. Jacobson,et al.  Supplementary Information for The Carbon Abatement Potential of High Penetration Intermittent Renewables , 2011 .

[38]  P. Kareiva,et al.  Dam choices: Analyses for multiple needs , 2012, Proceedings of the National Academy of Sciences.

[39]  S. Levin,et al.  Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin , 2011, Proceedings of the National Academy of Sciences.

[40]  P. Döll,et al.  High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management , 2011 .

[41]  T. Lovejoy,et al.  Energy production: Giant dam threatens Brazilian rainforest , 2011, Nature.

[42]  Lishan Ran,et al.  Cooperation is key to Asian hydropower , 2011, Nature.

[43]  Juan Xi,et al.  The Short-Term Impact of Involuntary Migration in China’s Three Gorges: A Prospective Study , 2011 .

[44]  Bernhard Lehner,et al.  The impact of global change on the hydropower potential of Europe: a model-based analysis , 2005 .

[45]  P. Döll,et al.  Development and validation of a global database of lakes, reservoirs and wetlands , 2004 .

[46]  Kaye M. Shedlock,et al.  The GSHAP Global Seismic Hazard Map , 1999 .