On first‐row diatomic molecules and local density models

The total Xα energy accurate to 0.3 eV is computed for H2, B2, C2, N2, O2, CO, and F2. Relative to experiment, the Xα model (α=0.7) is accurate to within ΔRe=0.1 bohr, ΔDe=2 eV, and Δωe=300 cm−1 for these molecules. Except for the lightest first‐row diatomic molecules, the Xα and experimental dissociation energies are bracketed by those of the Hartree–Fock model (from below) and the Local Spin Density model (from above).

[1]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[2]  R. J. Ottman,et al.  The canonical exchange energy modulation parameters in molecular MTXα calculations. Some first row homonuclear diatomic molecules , 1979 .

[3]  Bowen Liu,et al.  Theoretical study of molecular dipole moment functions. I. The X 1Σ+ state of CO , 1977 .

[4]  R. O. Jones,et al.  Muffin-tin orbitals and the total energy of atomic clusters , 1977 .

[5]  C. Chackerian Electric dipole moment function of the X 1Σ+ state of CO: Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest , 1976 .

[6]  Evert Jan Baerends,et al.  Self-consistent molecular hartree—fock—slater calculations. IV. On electron densities, spectroscopic constants and proton affinities of some small molecules , 1976 .

[7]  J. Koller,et al.  LCAO Approach to SCF-Xα Method , 1976 .

[8]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[9]  Ronald H. Felton,et al.  A new computational approach to Slater’s SCF–Xα equation , 1975 .

[10]  R. Felton,et al.  Calculation of the ionization potentials of ozone and ammonia by a LCAO‐Xα method , 1974 .

[11]  M. Krauss,et al.  Multiconfiguration self-consistent-field calculation of the dipole moment function of CO/X 1 sigma +/ , 1974 .

[12]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[13]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[14]  J. C. Slater Hellmann‐Feynman and Virial Theorems in the X α Method , 1972 .

[15]  K. Schwarz Optimization of the Statistical Exchange Parameter α for the Free Atoms H through Nb , 1972 .

[16]  J. C. Slater,et al.  Self-Consistent-Field X α Cluster Method for Polyatomic Molecules and Solids , 1972 .

[17]  Henry F. Schaefer,et al.  Ab Initio Potential Curve for the X 3Σg− State of O2 , 1971 .

[18]  A. C. Wahl,et al.  Electronic Structure of Diatomic Molecules. III. A. Hartree—Fock Wavefunctions and Energy Quantities for N2(X1Σg+) and N2+(X2Σg+, A2Πu, B2Σu+) Molecular Ions , 1966 .

[19]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[20]  W. Huo Electronic Structure of CO and BF , 1965 .

[21]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[22]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[23]  R. Gáspár,et al.  Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .

[24]  J. Connolly The Xα Method , 1977 .

[25]  G. Segal Semiempirical Methods of Electronic Structure Calculation , 1977 .

[26]  W. Richards,et al.  Low-lying valence levels of BN and C2. The ground state of BN , 1967 .

[27]  R. Nesbet,et al.  Electronic Structure of C2 , 1966 .

[28]  A. C. Wahl,et al.  Extended Hartree—Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2 , 1966 .