Parametric and kinetic minimum spanning trees

We consider the parametric minimum spanning tree problem, in which we are given a graph with edge weights that are linear functions of a parameter /spl lambda/ and wish to compute the sequence of minimum spanning trees generated as /spl lambda/ varies. We also consider the kinetic minimum spanning tree problem, in which /spl lambda/ represents time and the graph is subject in addition to changes such as edge insertions, deletions, and modifications of the weight functions as time progresses. We solve both problems in time O(n/sup 2/3/log/sup 4/3/) per combinatorial change in the tree (or randomized O(n/sup 2/3/log/sup 4/3/ n) per change). Our time bounds reduce to O(n/sup 1/2/log/sup 3/2/ n) per change (O(n/sup 1/2/log n) randomized) for planar graphs or other minor-closed families of graphs, and O(n/sup 1/4/log/sup 3/2/ n) per change (O(n/sup 1/4/ log n) randomized) for planar graphs with weight changes but no insertions or deletions.

[1]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[2]  Valerie King A Simpler Minimum Spanning Tree Verification Algorithm , 1995, WADS.

[3]  Micha Sharir,et al.  Algorithmic Techniques for Geometric Optimization , 1995, Computer Science Today.

[4]  David Fernández-Baca,et al.  Parametric Problems on Graphs of Bounded Tree-Width , 1992, SWAT.

[5]  Leonidas J. Guibas,et al.  Data Structures for Mobile Data , 1997, J. Algorithms.

[6]  David Eppstein Geometric Lower Bounds for Parametric Matroid Optimization , 1998, Discret. Comput. Geom..

[7]  Leonidas J. Guibas,et al.  Data structures for mobile data , 1997, SODA '97.

[8]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[9]  Leonidas J. Guibas,et al.  Proximity problems on moving points , 1997, SCG '97.

[10]  David Eppstein Clustering for faster network simplex pivots , 1994, SODA '94.

[11]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[12]  Ronald L. Graham,et al.  On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.

[13]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[14]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[15]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[16]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[17]  Bernard Chazelle A faster deterministic algorithm for minimum spanning trees , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[18]  Tamal K. Dey,et al.  Improved bounds on planar k-sets and k-levels , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[19]  Mikkel Thorup,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.

[20]  David Eppstein,et al.  Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees , 1996, J. Comput. Syst. Sci..

[21]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[22]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[23]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[24]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[25]  Tamal K. Dey,et al.  Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..

[26]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[27]  Robert E. Tarjan,et al.  Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time , 1992, SIAM J. Comput..

[28]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[29]  Philip N. Klein,et al.  A randomized linear-time algorithm for finding minimum spanning trees , 1994, STOC '94.

[30]  David Fernández-Baca,et al.  Parametric Problems on Graphs of Bounded Tree-Width , 1992, J. Algorithms.

[31]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[32]  Monika Henzinger,et al.  Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.

[33]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.