Parametric and kinetic minimum spanning trees
暂无分享,去创建一个
[1] Robert E. Tarjan,et al. A data structure for dynamic trees , 1981, STOC '81.
[2] Valerie King. A Simpler Minimum Spanning Tree Verification Algorithm , 1995, WADS.
[3] Micha Sharir,et al. Algorithmic Techniques for Geometric Optimization , 1995, Computer Science Today.
[4] David Fernández-Baca,et al. Parametric Problems on Graphs of Bounded Tree-Width , 1992, SWAT.
[5] Leonidas J. Guibas,et al. Data Structures for Mobile Data , 1997, J. Algorithms.
[6] David Eppstein. Geometric Lower Bounds for Parametric Matroid Optimization , 1998, Discret. Comput. Geom..
[7] Leonidas J. Guibas,et al. Data structures for mobile data , 1997, SODA '97.
[8] David Eppstein,et al. Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[9] Leonidas J. Guibas,et al. Proximity problems on moving points , 1997, SCG '97.
[10] David Eppstein. Clustering for faster network simplex pivots , 1994, SODA '94.
[11] Robert E. Tarjan,et al. A data structure for dynamic trees , 1981, STOC '81.
[12] Ronald L. Graham,et al. On the History of the Minimum Spanning Tree Problem , 1985, Annals of the History of Computing.
[13] David Eppstein,et al. Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.
[14] Robin Thomas,et al. A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.
[15] David Eppstein,et al. Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..
[16] Nimrod Megiddo,et al. Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[17] Bernard Chazelle. A faster deterministic algorithm for minimum spanning trees , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[18] Tamal K. Dey,et al. Improved bounds on planar k-sets and k-levels , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.
[19] Mikkel Thorup,et al. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 1998, STOC '98.
[20] David Eppstein,et al. Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees , 1996, J. Comput. Syst. Sci..
[21] Philip N. Klein,et al. A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.
[22] Leonidas J. Guibas,et al. Kinetic data structures: a state of the art report , 1998 .
[23] Greg N. Frederickson,et al. Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..
[24] Greg N. Frederickson. Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..
[25] Tamal K. Dey,et al. Improved Bounds for Planar k -Sets and Related Problems , 1998, Discret. Comput. Geom..
[26] Richard Cole,et al. Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.
[27] Robert E. Tarjan,et al. Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time , 1992, SIAM J. Comput..
[28] Michael T. Goodrich,et al. Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..
[29] Philip N. Klein,et al. A randomized linear-time algorithm for finding minimum spanning trees , 1994, STOC '94.
[30] David Fernández-Baca,et al. Parametric Problems on Graphs of Bounded Tree-Width , 1992, J. Algorithms.
[31] Greg N. Frederickson,et al. Data structures for on-line updating of minimum spanning trees , 1983, STOC.
[32] Monika Henzinger,et al. Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.
[33] Robert E. Tarjan,et al. Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.