The Adaptive TreePM: an adaptive resolution code for cosmological N‐body simulations

Cosmological N-body simulations are used for a variety of applications. Indeed progress in the study of large-scale structures and galaxy formation would have been very limited without this tool. For nearly 20 yr the limitations imposed by computing power forced simulators to ignore some of the basic requirements for modelling gravitational instability. One of the limitations of most cosmological codes has been the use of a force softening length that is much smaller than the typical interparticle separation. This leads to departures from collisionless evolution that is desired in these simulations. We propose a particle-based method with an adaptive resolution where the force softening length is reduced in high-density regions while ensuring that it remains well above the local interparticle separation. The method, called the Adaptive TreePM (ATreePM), is based on the TreePM code. We present the mathematical model and an implementation of this code, and demonstrate that the results converge over a range of options for parameters introduced in generalizing the code from the TreePM code. We explicitly demonstrate collisionless evolution in collapse of an oblique plane wave. We compare the code with the fixed resolution TreePM code and also an implementation that mimics adaptive mesh refinement methods and comment on the agreement and disagreements in the results. We find that in most respects the ATreePM code performs at least as well as the fixed resolution TreePM in highly overdense regions, from clustering and number density of haloes to internal dynamics of haloes. We also show that the adaptive code is faster than the corresponding high-resolution TreePM code.

[1]  J. S. Bagla Cosmological N-body simulation : Techniques, scope and status , 2004 .

[2]  J. Prasad,et al.  Effects of the size of cosmological N-body simulations on physical quantities – III. Skewness , 2008, 0804.1197.

[3]  A. Melott,et al.  A Test of the Particle Paradigm in N-Body Simulations , 1996, astro-ph/9607152.

[4]  S. J. Dodds,et al.  Non-linear evolution of cosmological power spectra , 1996 .

[5]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[6]  L. Moscardini,et al.  A frozen-flow approximation to the evolution of large-scale structures in the Universe , 1992 .

[7]  Two-body relaxation in simulated cosmological haloes , 2005, astro-ph/0506617.

[8]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[9]  Effects of the size of cosmological N-Body simulations on physical quantities — I: Mass Function , 2006, astro-ph/0601320.

[10]  S. Borgani,et al.  Simulation Techniques for Cosmological Simulations , 2008, 0801.1023.

[11]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[12]  T. Padmanabhan,et al.  Scaling properties of gravitational clustering in the nonlinear regime , 1993 .

[13]  Walter Dehnen,et al.  A Hierarchical O(N) Force Calculation Algorithm , 2002 .

[14]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[15]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[16]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[17]  P. Peebles,et al.  On the integration of the BBGKY equations for the development of strongly nonlinear clustering in an expanding universe , 1977 .

[18]  Toshiyuki Fukushige,et al.  PPPM and TreePM Methods on GRAPE Systems for Cosmological N-body Simulations , 2005 .

[19]  Varun Sahni,et al.  Approximation methods for non-linear gravitational clustering , 1995 .

[20]  Joshua E. Barnes,et al.  Are some N-body algorithms intrinsically less collisional than others? , 1990 .

[21]  Michael S. Warren,et al.  Robustness of Cosmological Simulations. I. Large-Scale Structure , 2004, astro-ph/0411795.

[22]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[23]  F. Pearce,et al.  A new parallel PM3 code for very large-scale cosmological simulations , 1998, astro-ph/9805096.

[24]  Hugh Merz,et al.  Towards optimal parallel PM N-body codes: PMFAST , 2005 .

[25]  A. I. Saichev,et al.  The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .

[26]  Lars Hernquist,et al.  Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations , 2003, astro-ph/0312651.

[27]  B. Rånby,et al.  Surface modification by continuous graft copolymerization. I. Photoinitiated graft copolymerization onto polyethylene tape film surface , 1990 .

[28]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[29]  A. Evrard Beyond N-body: 3D cosmological gas dynamics , 1988 .

[30]  E. Bertschinger SIMULATIONS OF STRUCTURE FORMATION IN THE UNIVERSE , 1998 .

[31]  Guohong Xu A new parallel N body gravity solver: TPM , 1994, astro-ph/9409021.

[32]  Thanu Padmanabhan,et al.  Theoretical Astrophysics: Volume 3, Galaxies and Cosmology , 2000 .

[33]  David Merritt Optimal smoothing for N-body codes , 1996 .

[34]  S. Prunet,et al.  On the onset of stochasticity in Λ cold dark matter cosmological simulations , 2008, 0803.3120.

[35]  Performance Characteristics of TreePM codes , 2002, astro-ph/0212129.

[36]  J. Villumsen,et al.  Linear Evolution of the Gravitational Potential: A New Approximation for the Nonlinear Evolution of Large-Scale Structure , 1993 .

[37]  Chung-Pei Ma Analytical Approximation to the Nonlinear Power Spectrum of Gravitational Clustering , 1998, astro-ph/9809267.

[38]  Joachim Stadel,et al.  Two-body relaxation in cold dark matter simulations , 2003, astro-ph/0304549.

[39]  F. Bouchet,et al.  Application of the Ewald method to cosmological N-body simulations , 1991 .

[40]  The impact of box size on the properties of dark matter haloes in cosmological simulations , 2005, astro-ph/0512281.

[41]  Carlos S. Frenk,et al.  Gravitational clustering from scale-free initial conditions , 1988 .

[42]  Philippe P. Brieu,et al.  P4M: a parallel version of P3M , 1998 .

[43]  H. Couchman,et al.  Mesh-refined P3M - A fast adaptive N-body algorithm , 1991 .

[44]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[45]  E. Bertschinger,et al.  Local Approximations to the Gravitational Collapse of Cold Matter , 1995, astro-ph/9508114.

[46]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[47]  T. Theuns Parallel P3M with exact calculation of short range forces , 1993, astro-ph/9309035.

[48]  Toshiyuki Fukushige,et al.  GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations , 2003, astro-ph/0310702.

[49]  B. Marcos,et al.  Towards quantitative control on discreteness error in the non-linear regime of cosmological N-body simulations , 2008, 0805.1357.

[50]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[51]  T. Padmanabhan,et al.  Nonlinear evolution of density perturbations using approximate constancy of gravitational potential , 1994 .

[52]  Andrew J. Connolly,et al.  The shape of the SDSS DR5 galaxy power spectrum , 2006 .

[53]  Jeremiah P. Ostriker,et al.  The Tree-particle-mesh N-body gravity solver , 1999 .

[54]  Atsushi Kawai,et al.  Pseudoparticle Multipole Method: A Simple Method to Implement a High-Accuracy Tree Code , 2000, astro-ph/0012041.

[55]  Junichiro Makino,et al.  Vectorization of a treecode , 1990 .

[56]  Volker Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001 .

[57]  F. Bouchet,et al.  Cosmological Simulations Using the Hierarchical Tree Method , 1988 .

[58]  Junichiro Makino,et al.  A Fast Parallel Treecode with GRAPE , 2004 .

[59]  Jeremiah P. Ostriker,et al.  Cosmological simulations using special purpose computers: Implementing P**3M on GRAPE , 1995 .

[60]  CosmologicalN-body simulations , 1997, astro-ph/0411730.

[61]  James Binney,et al.  Two-body relaxation in cosmological simulations , 2002 .

[62]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[63]  John Dubinski A parallel tree code , 1996 .

[64]  Daniel J. Price,et al.  An energy‐conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N‐body codes , 2006, astro-ph/0610872.

[65]  Changbom Park,et al.  Primordial fluctuations and non-linear structure , 1991 .

[66]  Y. Suto,et al.  Demonstrating Discreteness and Collision Error in Cosmological N-Body Simulations of Dark Matter Gravitational Clustering , 1996, astro-ph/9609152.

[67]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[68]  E. Saar,et al.  An adaptive multigrid solver for high-resolution cosmological simulations , 1995 .

[69]  James Binney,et al.  Multi‐level adaptive particle mesh (MLAPM): a c code for cosmological simulations , 2001, astro-ph/0103503.

[70]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[71]  A Parallel TreePM Code , 2004, astro-ph/0405220.

[72]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[73]  T. Padmanabhan Modelling the non-linear gravitational clustering in the expanding Universe , 1996 .

[74]  J. Bagla,et al.  A modified TreePM code , 2008, 0802.3215.

[75]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[76]  Robert J. Thacker,et al.  A parallel adaptive P3M code with hierarchical particle reordering , 2006, Comput. Phys. Commun..

[77]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[78]  A. Klypin,et al.  Three-dimensional numerical model of the formation of large-scale structure in the Universe , 1983 .

[79]  Patterns in Nonlinear Gravitational Clustering: A Numerical Investigation , 1995, astro-ph/9506051.

[80]  J. Monaghan,et al.  Kernel estimates as a basis for general particle methods in hydrodynamics , 1982 .

[81]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[82]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[83]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[84]  J. Stadel,et al.  Discreteness Effects in ΛCDM Simulations: A Wavelet-Statistical View , 2008, 0804.0294.

[85]  Comments on the size of the simulation box in cosmological N‐body simulations , 2004, astro-ph/0410373.

[86]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[87]  J. Prasad,et al.  Gravitational collapse in an expanding background and the role of substructure - II. Excess power at small scales and its effect on collapse of structures at larger scales , 2008, 0802.2796.

[88]  John Dubinski,et al.  GOTPM: A Parallel Hybrid Particle-Mesh Treecode , 2004 .

[89]  Particle-mesh simulations of clustering in cosmology , 1985 .

[90]  E. Athanassoula,et al.  Optimal softening for force calculations in collisionless N-body simulations , 1999, astro-ph/9912467.

[91]  Jeremiah P. Ostriker,et al.  Tree Particle-Mesh: An Adaptive, Efficient, and Parallel Code for Collisionless Cosmological Simulation , 2003 .

[92]  Walter Dehnen Towards optimal softening in three-dimensional N-body codes - I. Minimizing the force error , 2000 .

[93]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[94]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994 .

[95]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[96]  David H. Porter,et al.  A tree code with logarithmic reduction of force terms, hierarchical regularization of all variables, and explicit accuracy controls , 1989 .

[97]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[98]  Yasushi Suto,et al.  Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations , 1997 .

[99]  James Binney Discreteness effects in cosmological N-body simulations , 2004 .

[100]  T. Padmanabhan,et al.  Transfer of power in non-linear gravitational clustering , 1997 .

[101]  Alexander S. Szalay,et al.  The Shape of the Sloan Digital Sky Survey Data Release 5 Galaxy Power Spectrum , 2007 .

[102]  Dehnen A Very Fast and Momentum-conserving Tree Code. , 2000, The Astrophysical journal.

[103]  L. Hernquist,et al.  Vectorization of tree traversals , 1990 .

[104]  Junichiro Makino An efficient parallel algorithm for O(N2) direct summation method and its variations on distributed-memory parallel machines , 2002 .