Telecom traffic pumping analytics via explainable data science

[1]  Jörg Becker,et al.  Comprehensible Predictive Models for Business Processes , 2016, MIS Q..

[2]  D. Hand,et al.  Unsupervised Profiling Methods for Fraud Detection , 2002 .

[3]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[4]  Mark A. Girolami,et al.  Employing Latent Dirichlet Allocation for fraud detection in telecommunications , 2007, Pattern Recognit. Lett..

[5]  Kok-Leong Ong,et al.  Fraud detection: A systematic literature review of graph-based anomaly detection approaches , 2020, Decis. Support Syst..

[6]  Sebastián Maldonado,et al.  Analytics meets port logistics: A decision support system for container stacking operations , 2019, Decis. Support Syst..

[7]  Kristof Coussement,et al.  Improving Customer Complaint Management by Automatic Email Classification Using Linguistic Style Features as Predictors , 2007 .

[8]  P.E. Heegaard Evolution of Traffic Patterns in Telecommunication Systems , 2007, 2007 Second International Conference on Communications and Networking in China.

[9]  Allan R. Wilks,et al.  Fraud Detection in Telecommunications: History and Lessons Learned , 2010, Technometrics.

[10]  M. Tech Fraud Detection in Credit Card by Clustering Approach , 2014 .

[11]  George Wright,et al.  The Delphi technique as a forecasting tool: issues and analysis , 1999 .

[12]  Bart Baesens,et al.  Building comprehensible customer churn prediction models with advanced rule induction techniques , 2011, Expert Syst. Appl..

[13]  S. Athey,et al.  Generalized random forests , 2016, The Annals of Statistics.

[14]  O. Järv,et al.  Mobile Phones in a Traffic Flow: A Geographical Perspective to Evening Rush Hour Traffic Analysis Using Call Detail Records , 2012, PloS one.

[15]  Foster J. Provost,et al.  Explaining Data-Driven Document Classifications , 2013, MIS Q..

[16]  Alae Chouiekh,et al.  ConvNets for Fraud Detection analysis , 2018 .

[17]  M. Ankerst,et al.  OPTICS: ordering points to identify the clustering structure , 1999, ACM SIGMOD Conference.

[18]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[19]  Petr Hájek Interpretable Fuzzy Rule-Based Systems for Detecting Financial Statement Fraud , 2019, AIAI.

[20]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[21]  Yibo Wang,et al.  Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud , 2018, Decis. Support Syst..

[22]  Bart Baesens,et al.  Comprehensible Credit Scoring Models Using Rule Extraction from Support Vector Machines , 2007, Eur. J. Oper. Res..

[23]  Simon C. Potter,et al.  A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans , 2012, PLoS ONE.

[24]  Kai Chen,et al.  Detecting telecommunication fraud by understanding the contents of a call , 2018, Cybersecur..

[25]  Babis Theodoulidis,et al.  Analyzing Customer Experience Feedback Using Text Mining , 2014 .

[26]  Dominik Olszewski,et al.  A probabilistic approach to fraud detection in telecommunications , 2012, Knowl. Based Syst..

[27]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[28]  Richard Weber,et al.  Dynamic Rough-Fuzzy Support Vector Clustering , 2017, IEEE Transactions on Fuzzy Systems.

[29]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[30]  Aurélien Francillon,et al.  SoK: Fraud in Telephony Networks , 2017, 2017 IEEE European Symposium on Security and Privacy (EuroS&P).

[31]  Ricardo J. G. B. Campello,et al.  Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.

[32]  Dominik Olszewski,et al.  Fraud detection using self-organizing map visualizing the user profiles , 2014, Knowl. Based Syst..

[33]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.