Maximum Independent Set in 2-Direction Outersegment Graphs
暂无分享,去创建一个
[1] János Pach,et al. Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.
[2] Jan Kratochvíl,et al. String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.
[3] János Pach,et al. A Separator Theorem for String Graphs and its Applications , 2009, Combinatorics, Probability and Computing.
[4] Gyula O. H. Katona,et al. Horizons of combinatorics , 2008 .
[5] Walter Unger,et al. On the k-Colouring of Circle-Graphs , 1988, STACS.
[6] Marcus Schaefer,et al. Recognizing string graphs in NP , 2002, STOC '02.
[7] J. Mark Keil. The Complexity of Domination Problems in Circle Graphs , 1993, Discret. Appl. Math..
[8] J. Pach,et al. Erdős-Hajnal-type Results on Intersection Patterns of Geometric Objects , 2008 .
[9] János Pach,et al. Recognizing String Graphs Is Decidable , 2001, GD.
[10] Fanica Gavril,et al. Maximum weight independent sets and cliques in intersection graphs of filaments , 2000, Inf. Process. Lett..
[11] Jan Kratochvíl,et al. String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.
[12] Matús Mihalák,et al. Vertex Disjoint Paths for Dispatching in Railways , 2010, ATMOS.
[13] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[14] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[15] Jan Kratochvíl,et al. String graphs. I. The number of critical nonstring graphs is infinite , 1991, J. Comb. Theory, Ser. B.
[16] M. Middendorf,et al. The max clique problem in classes of string-graphs , 1992, Discret. Math..