Quantum Discord as Optimal Resource for Quantum Communication

Borivoje Dakic1†, Yannick Ole Lipp1†, Xiaosong Ma2,3†, Martin Ringbauer1†, Sebastian Kropatschek3, Stefanie Barz2, Tomasz Paterek4, Vlatko Vedral4,5, Anton Zeilinger2,3, Caslav Brukner1,3 & Philip Walther1,3 1 Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. 2 Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. 3 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria. 4 Centre for Quantum Technologies, National University of Singapore, Block S15, 3 Science Drive 2, 117543 Singapore. 5 Department of Atomic and Laser Physics, University of Oxford, Oxford OX1 3PU, UK. † These authors contributed equally to this work (listed alphabetically). (Dated: March 9, 2012)

[1]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[2]  Meyer Sophisticated quantum search without entanglement , 2000, Physical review letters.

[3]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[4]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[8]  Rafael Chaves,et al.  Noisy One-Way Quantum Computations: The Role of Correlations , 2010, 1007.2165.

[9]  Animesh Datta,et al.  Interpreting quantum discord through quantum state merging , 2010, ArXiv.

[10]  L. Aolita,et al.  Operational interpretations of quantum discord , 2010, 1008.3205.

[11]  R Laflamme,et al.  Characterization of complex quantum dynamics with a scalable NMR information processor. , 2005, Physical review letters.

[12]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[13]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[14]  A. Datta Studies on the Role of Entanglement in Mixed-state Quantum Computation , 2008, 0807.4490.

[15]  A. Winter,et al.  Quantum, classical, and total amount of correlations in a quantum state , 2004, quant-ph/0410091.

[16]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[17]  A. Datta,et al.  Entanglement and the power of one qubit , 2005, quant-ph/0505213.

[18]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[19]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[20]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[21]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[22]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[23]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[24]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[25]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[26]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[27]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[28]  R. Laflamme,et al.  Experimental detection of nonclassical correlations in mixed-state quantum computation , 2011, 1105.2262.

[29]  A. Acín,et al.  Almost all quantum states have nonclassical correlations , 2009, 0908.3157.

[30]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  P. Horodecki,et al.  No-local-broadcasting theorem for multipartite quantum correlations. , 2007, Physical review letters.