Fuzzy q-Bernstein polynomials

In this note, we give the definition of the fuzzy q-Bernstein polynomials and discuss their properties. We obtain the approximation rate of the fuzzy q-Bernstein polynomials and the fuzzy limit q-Bernstein operators. We show that the fuzzy q-Bernstein polynomials have the shape-preserving properties. We also obtain the convergence rate of the fuzzy q-Bernstein polynomials for fixed q ∈ (0, 1). The surprising fact is that we can transfer results of q-Bernstein polynomials in the case q ∈ (0, 1) into the fuzzy setting.

[1]  Sofiya Ostrovska THE FIRST DECADE OF THE Q-BERNSTEIN POLYNOMIALS: RESULTS AND PERSPECTIVES , 2007 .

[2]  Congxin Wu,et al.  On Henstock integral of fuzzy-number-valued functions (I) , 2001, Fuzzy Sets Syst..

[3]  George M. Phillips,et al.  A survey of results on the q-Bernstein polynomials , 2010 .

[4]  G. Phillips Interpolation and Approximation by Polynomials , 2003 .

[5]  George A. Anastassiou A FUZZY TRIGONOMETRIC APPROXIMATION THEOREM OF WEIERSTRASS-TYPE , 2010 .

[6]  George A. Anastassiou BASIC FUZZY KOROVKIN THEORY , 2010 .

[7]  Sofiya Ostrovska,et al.  q-Bernstein polynomials and their iterates , 2003, J. Approx. Theory.

[8]  Sofiya Ostrovska,et al.  Convergence of Generalized Bernstein Polynomials , 2002, J. Approx. Theory.

[9]  Puyin Liu,et al.  Analysis of approximation of continuous fuzzy functions by multivariate fuzzy polynomials , 2002, Fuzzy Sets Syst..

[10]  Sorin G. Gal Approximation Theory in Fuzzy Setting , 2000 .

[11]  George A. Anastassiou,et al.  Fuzzy Mathematics: Approximation Theory , 2010, Studies in Fuzziness and Soft Computing.

[12]  Heping Wang,et al.  The rate of convergence of q-Bernstein polynomials for 0 , 2005, J. Approx. Theory.

[13]  George M. Phillips,et al.  A generalization of the Bernstein polynomials based on the q-integers , 2000, The ANZIAM Journal.

[14]  Sofiya Ostrovska,et al.  The norm estimates for the q-Bernstein operator in the case q>1 , 2010, Math. Comput..

[15]  George A. Anastassiou RATE OF CONVERGENCE OF FUZZY NEURAL NETWORK OPERATORS, UNIVARIATE CASE , 2002 .

[16]  D. Dubois,et al.  FUZZY NUMBERS: AN OVERVIEW , 1993 .

[17]  Wang Heping Korovkin-type theorem and application , 2005 .

[18]  Heping Wang,et al.  Voronovskaya-type formulas and saturation of convergence for q-Bernstein polynomials for 0 , 2007, J. Approx. Theory.

[19]  Barnabás Bede,et al.  Approximation by fuzzy B-spline series , 2006 .