A Type of Finite Element Gradient Recovery Method based on Vertex-Edge-Face Interpolation: The Recovery Technique and Superconvergence Property
暂无分享,去创建一个
[1] J. Bramble,et al. Higher order local accuracy by averaging in the finite element method , 1977 .
[2] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[3] Nils-Erik Wiberg,et al. Superconvergent patch recovery of finite‐element solution and a posteriori L2 norm error estimate , 1994 .
[4] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[5] Bo Li,et al. Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .
[6] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[7] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[8] Zhimin Zhang,et al. Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..
[9] Jichun Li. Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction—diffusion problems , 2001 .
[10] I. Babuska,et al. The finite element method and its reliability , 2001 .
[11] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[12] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..
[13] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[14] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[15] Zhimin Zhang,et al. Validation of the a posteriori error estimator based on polynomial preserving recovery for linear elements , 2004 .
[16] Zhimin Zhang. POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .
[17] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[18] V. Shaidurov,et al. RICHARDSON EXTRAPOLATION FOR EIGENVALUE OF DISCRETE SPECTRAL PROBLEM ON GENERAL MESH , 2007 .
[19] Xie He-hu. Superconvergence Measurement for General Meshes by Linear Finite Element Method , 2011 .