An Algorithm to Check Whether a Basis of a Parametric Polynomial System is a Comprehensive Gröbner Basis and the Associated Completion Algorithm
暂无分享,去创建一个
[1] Akira Suzuki,et al. A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases , 2006, ISSAC '06.
[2] Varieties , 1862, Edinburgh medical journal.
[3] A. Lozano. Using Kapur-Sun-Wang algorithm for the Gröbner cover , 2012 .
[4] Volker Weispfenning,et al. Canonical comprehensive Gröbner bases , 2002, ISSAC '02.
[5] Antonio Montes,et al. A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..
[6] Akira Suzuki,et al. An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.
[7] Deepak Kapur,et al. An Approach for Solving Systems of Parametric Polynomial Equations , 1993 .
[8] Yao Sun,et al. An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system , 2013, J. Symb. Comput..
[9] 佐藤 洋祐,et al. 特集 Comprehensive Grobner Bases , 2007 .
[10] Michael Kalkbrener,et al. On the Stability of Gröbner Bases Under Specializations , 1997, J. Symb. Comput..
[11] Volker Weispfenning. Comprehensive Gröbner bases and regular rings , 2006, J. Symb. Comput..
[12] Michael Wibmer,et al. Gröbner bases for polynomial systems with parameters , 2010, J. Symb. Comput..
[13] Bruno Buchberger,et al. A criterion for detecting unnecessary reductions in the construction of Groebner bases , 1979, EUROSAM.
[14] Antonio Montes,et al. Improving the DISPGB algorithm using the discriminant ideal , 2006, J. Symb. Comput..
[15] WeispfenningVolker. Canonical comprehensive Gröbner bases , 2003 .
[16] Katsusuke Nabeshima,et al. A speed-up of the algorithm for computing comprehensive Gröbner systems , 2007, ISSAC '07.
[17] Antonio Montes,et al. Minimal canonical comprehensive Gröbner systems , 2006, J. Symb. Comput..
[18] Michael Wibmer,et al. Gröbner bases for families of affine or projective schemes , 2006, J. Symb. Comput..
[19] Hans Schönemann,et al. SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.
[20] Volker Weispfenning,et al. Comprehensive Gröbner Bases , 1992, J. Symb. Comput..
[21] Yao Sun,et al. An efficient method for computing comprehensive Gröbner bases , 2013, J. Symb. Comput..
[22] David A. Cox,et al. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .