Convergence and superconvergence analysis of a nonconforming finite element method for solving the Signorini problem

Abstract In this paper, we present the Carey nonconforming finite element approximation of the variational inequality resulting from the Signorini problem. Firstly, we show that if the displacement field is of H 2 -regularity, the optimal convergence rate of  O ( h ) can be obtained with respect to the energy norm. Secondly, if stronger but reasonable  H 5 2 -regularity is available, the superconvergence rate of  O ( h 3 2 ) can be derived through the interpolated postprocessing technique. Finally, numerical experiments are given which are consistent with our theoretical analysis.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Francesco Scarpini,et al.  Error estimates for the approximation of some unilateral problems , 1977 .

[3]  Dongyang Shi,et al.  ACCURACY ANALYSIS FOR QUASI-CAREY ELEMENT* , 2008, J. Syst. Sci. Complex..

[4]  Jincheng Ren,et al.  A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations , 2009, Appl. Math. Comput..

[5]  Shi,et al.  CONVERGENCE ANALYSIS FOR A NONCONFORMING MEMBRANE ELEMENT ON ANISOTROPIC MESHES , 2005 .

[6]  Hua,et al.  THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM , 2007 .

[7]  Shi Zhong-ci,et al.  Convergence properties of two nonconforming finite elements , 1985 .

[8]  G. Carey An analysis of finite element equations and mesh subdivision , 1976 .

[9]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[10]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .

[11]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[12]  Qun Lin,et al.  Superconvergence of finite element method for the Signorini problem , 2008 .

[13]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[14]  Dongyang Shi,et al.  ACCURACY ANALYSIS FOR QUASI-WILSON ELEMENT , 2000 .

[15]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[16]  Shi Dong-yang,et al.  A new nonconforming mixed finite element scheme for the stationary Navier-Stokes equations , 2011 .

[17]  石东洋,et al.  Superconvergence analysis of Wilson element on anisotropic meshes , 2007 .

[18]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[19]  Bo Li,et al.  Superconvergence analysis and error expansion for the Wilson nonconforming finite element , 1994 .

[20]  Dongyang Shi,et al.  LOW ORDER CROUZEIX-RAVIART TYPE NONCONFORMING FINITE ELEMENT METHODS FOR APPROXIMATING MAXWELL'S EQUATIONS , 2008 .

[21]  Dongwoo Sheen,et al.  Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems , 1999 .

[22]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[23]  Jincheng Ren,et al.  NONCONFORMING MIXED FINITE ELEMENT METHOD FOR THE STATIONARY CONDUCTION-CONVECTION PROBLEM , 2009 .

[24]  Jincheng Ren,et al.  Nonconforming mixed finite element approximation to the stationary Navier–Stokes equations on anisotropic meshes , 2009 .