An approach for estimating the uncertainty in ParaDiS predictions.
暂无分享,去创建一个
H. N. Najm | J. Ray | M. Rhee | A. Arsenlis | H. Najm | J. Ray | A. Arsenlis | M. Rhee
[1] R. Ghanem. Probabilistic characterization of transport in heterogeneous media , 1998 .
[2] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[3] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[4] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[5] Cosmin Safta,et al. Multiparameter Spectral Representation of Noise-Induced Competence in Bacillus Subtilis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[6] A. Raftery,et al. Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .
[7] David Higdon,et al. A Primer on Space-Time Modeling from a Bayesian Perspective , 2006 .
[8] A. Raftery,et al. Probabilistic forecasts, calibration and sharpness , 2007 .
[9] L. Mathelin,et al. Stochastic data assimilation of the random shallow water model loads with uncertain experimental measurements , 2011 .
[10] Knut Petras,et al. Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.
[11] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[12] A. OHagan,et al. Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..
[13] Mark R. Gilbert,et al. Stress and temperature dependence of screw dislocation mobility in α -Fe by molecular dynamics , 2011 .
[14] Robert B. Gramacy,et al. Adaptive Design and Analysis of Supercomputer Experiments , 2008, Technometrics.
[15] Walter R. Gilks,et al. Hypothesis testing and model selection , 1995 .
[16] Robert B. Gramacy,et al. Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .
[17] Karen Willcox,et al. Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .
[18] Nathan R. Barton,et al. A multiscale strength model for extreme loading conditions , 2011 .
[19] D. Xiu,et al. Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .
[20] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[21] E. Somersalo,et al. Statistical and computational inverse problems , 2004 .
[22] N. Wiener. The Homogeneous Chaos , 1938 .
[23] Raphael T. Haftka,et al. Surrogate-based Analysis and Optimization , 2005 .
[24] Nicholas Zabaras,et al. An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .
[25] P. Constantine,et al. A Surrogate Accelerated Bayesian Inverse Analysis of the HyShot II Supersonic Combustion Data , 2010 .
[26] O. L. Maître,et al. Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .
[27] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[28] R. Ghanem,et al. Uncertainty propagation using Wiener-Haar expansions , 2004 .
[29] Knut Petras,et al. Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.
[30] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[31] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[32] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[33] Athanasios Arsenlis,et al. Enabling strain hardening simulations with dislocation dynamics , 2006 .
[34] Karen Willcox,et al. Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..
[35] Adrian E. Raftery,et al. Hypothesis testing and model selection , 1996 .
[36] Knut Petras,et al. On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..