An approach for estimating the uncertainty in ParaDiS predictions.

This report outlines an approach for computing the uncertainties in the predictions of computationally expensive models. While general, we use ParaDiS , a dislocation dynamics simulator originating in Lawrence Livermore National Laboratory, as the target application. ParaDiS is a mesoscale model, and uses submodels constructed/upscaled from microscale (molecular statics and dynamics) simulations. ParaDiS outputs, in turn, are upscaled and used in continuum (macroscale) simulations, e.g., those performed by ALE3D. This report addresses how one may quantify the uncertainties introduced by upscaling (both from microscale to mesoscale, and mesoscale to continuum), and the dependence of uncertainties in ParaDiS predictions on those of the inputs. This dependence is established via sensitivity analysis, and we address how this may be performed with a minimum of ParaDiS runs, given its immense computational cost. This includes constructing a smaller version of the model, sparse sampling of the parameter space, and exploiting the asymptotic nature of the time-evolution of the model outputs. The report concludes with a discussion of the computational resources required to perform this uncertainty quantification study.

[1]  R. Ghanem Probabilistic characterization of transport in heterogeneous media , 1998 .

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[4]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[5]  Cosmin Safta,et al.  Multiparameter Spectral Representation of Noise-Induced Competence in Bacillus Subtilis , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[7]  David Higdon,et al.  A Primer on Space-Time Modeling from a Bayesian Perspective , 2006 .

[8]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[9]  L. Mathelin,et al.  Stochastic data assimilation of the random shallow water model loads with uncertain experimental measurements , 2011 .

[10]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[11]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[12]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[13]  Mark R. Gilbert,et al.  Stress and temperature dependence of screw dislocation mobility in α -Fe by molecular dynamics , 2011 .

[14]  Robert B. Gramacy,et al.  Adaptive Design and Analysis of Supercomputer Experiments , 2008, Technometrics.

[15]  Walter R. Gilks,et al.  Hypothesis testing and model selection , 1995 .

[16]  Robert B. Gramacy,et al.  Ja n 20 08 Bayesian Treed Gaussian Process Models with an Application to Computer Modeling , 2009 .

[17]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[18]  Nathan R. Barton,et al.  A multiscale strength model for extreme loading conditions , 2011 .

[19]  D. Xiu,et al.  Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos , 2002 .

[20]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[21]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[22]  N. Wiener The Homogeneous Chaos , 1938 .

[23]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[24]  Nicholas Zabaras,et al.  An efficient Bayesian inference approach to inverse problems based on an adaptive sparse grid collocation method , 2009 .

[25]  P. Constantine,et al.  A Surrogate Accelerated Bayesian Inverse Analysis of the HyShot II Supersonic Combustion Data , 2010 .

[26]  O. L. Maître,et al.  Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation , 2003 .

[27]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[28]  R. Ghanem,et al.  Uncertainty propagation using Wiener-Haar expansions , 2004 .

[29]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[30]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[31]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[32]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[33]  Athanasios Arsenlis,et al.  Enabling strain hardening simulations with dislocation dynamics , 2006 .

[34]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[35]  Adrian E. Raftery,et al.  Hypothesis testing and model selection , 1996 .

[36]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..