Photophysics of an electrophosphorescent platinum (II) porphyrin in solid films.

We examine electronic processes in platinum (II) octaethyl porphyrin (PtOEP) embedded in an organic solid state matrix and in the form of vacuum-evaporated neat films in conjunction with potential applications of this compound to organic photovoltaic and electrophosphorescent devices. Absorption, photoexcitation, and luminescence spectra indicate the excitonic dimers to be dominant excited states, and their dissociation underlies the charge photogeneration process. Different charge separation distance (1.5 nm and 2.6 nm) in opposite charge carrier pairs preceding dissociation can be distinguished based on the fit of the three-dimensional Onsager theory of geminate recombination to electromodulated luminescence and photoconduction measurements. The near-positive electrode concentrated triplet dimer excitons, produced by strongly 370 nm absorbed light in neat PtOEP films, are efficiently quenched by electron transfer to the metal (Al), generating the positive charge with an efficiency eta+ exceeding 0.15 at high electric fields and dominating the measured photocurrent. Their dissociation efficiency in the bulk, eta- (negatively biased illuminated electrode), is more than one order of magnitude lower than eta+. The dissociation of singlet dimer states dominates the bulk photogeneration process induced by the weakly-absorbed light at 450 nm, with comparable eta+ and eta-. The "hot excited state" underlying the temperature-increasing emission at 540 nm has been attributed to the upper excitonic component Q+ of the first absorption band Q consistent with the exciton concept applied successfully to the interpretation of all dimer-underlain spectroscopic features of PtOEP samples studied.

[1]  John M. Lupton,et al.  A molecular thermometer based on long-lived emission from platinum octaethyl porphyrin , 2002 .

[2]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[3]  R. Bartlett,et al.  An application of the equation-of-motion coupled cluster method to the excited states of formaldehyde, acetaldehyde, and acetone , 1995 .

[4]  J. Simons Photochemistry and spectroscopy , 1971 .

[5]  M. Sprik Computation of the pK of liquid water using coordination constraints , 2000 .

[6]  C. Dwiggins,et al.  Nuclear magnetic resonance study of the association of porphyrins in chloroform solution. Mesoporphyrin IX dimethyl ester and its nickel chelate , 1969 .

[7]  J. Lupton,et al.  Hot band emission and energy transfer in organic electrophosphorescent devices , 2002 .

[8]  Stephen R. Forrest,et al.  Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation , 2000 .

[9]  Stephen R. Forrest,et al.  Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer , 2000 .

[10]  W. Stampor,et al.  Electromodulation of fluorescence in a crystalline organic photoconductor (thionaphthenindole) , 1992 .

[11]  Donal D. C. Bradley,et al.  Origin of electrophosphorescence from a doped polymer light emitting diode , 2001 .

[12]  A. Slawin,et al.  X-ray crystal structure of 2,3,7,8,12,13,17,18-octaethylporphyrinatoplatinum(II) (PtOEP): Potential for correlation of meso-carbon bond-angle (Ĉm) With one-bond 13Cmeso1Hmethine coupling constant in some diamagnetic metal complexes of OEP , 1988 .

[13]  Young-Yong Noh,et al.  Effect of Molecular Orientation of Epitaxially Grown Platinum(II) Octaethyl Porphyrin Films on the Performance of Field‐Effect Transistors , 2003 .

[14]  W. S. Koski,et al.  SOLVENT AND SUBSTITUENT EFFECTS ON THE SPIN RESONANCE SPECTRA OF METALLOPORPHYRINS. , 1965, Journal of the American Chemical Society.

[15]  H. Dolphin XVI. Vapor Absorption Spectra and Redox Reactions: Octalkylporphins , 1970 .

[16]  Damodar M. Pai,et al.  Hole transport in solid solutions of a diamine in polycarbonate , 1984 .

[17]  M. Kasha,et al.  The exciton model in molecular spectroscopy , 1965 .

[18]  H. Baessler,et al.  Diffusion of Singlet Excitons in Tetracene Crystals , 1970 .

[19]  P. Douglas,et al.  Effect of humidity on the response characteristics of luminescent PtOEP thin film optical oxygen sensors , 2002 .

[20]  K. Leo,et al.  Novel near-infrared photoluminescence from platinum(II)-porphyrin (PtOEP) aggregates , 2004 .

[21]  F. R. Longo,et al.  Luminescence studies on several tetraarylporphins and their zinc derivatives , 1975 .

[22]  S. Forrest,et al.  Formation of triplet excimers and dimers in amorphous organic thin films and light emitting devices , 2003 .

[23]  W. Stampor Electroabsorption study of vacuum-evaporated films of Pt(II)octaethylporphyrin , 2004 .

[24]  Paul Seidler,et al.  Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes , 2001 .

[25]  G. W. Robinson,et al.  Electronic and Vibrational Exciton Structure in Crystalline Benzene , 1968 .

[26]  G. Canters,et al.  MCD of transitions to Jahn-Teller unstable states in the metalloporphins of Mg, Zn, Cu, Pd and Pt , 1976 .

[27]  R. Hesse,et al.  Absorption spectra of disordered solid tetracene and pentacene , 1980 .

[28]  W. Stampor,et al.  Electromodulation of Luminescence in Organic Photoconductors , 1996 .

[29]  Jan Kalinowski,et al.  Quenching effects in organic electrophosphorescence , 2002 .

[30]  Paul M. Borsenberger,et al.  The role of disorder on charge transport in molecularly doped polymers and related materials , 1993 .

[31]  Ichiro Okura,et al.  Photoluminescent determination of oxygen using metalloporphyrin-polymer sensing systems , 1998 .

[32]  Everly B. Fleischer,et al.  Crystal Structure of Porphine , 1965 .

[33]  J. Shelnutt,et al.  Aggregation of uroporphyrin I and its metal derivatives in aqueous solution: Raman difference spectroscopy and absorption spectroscopy , 1984 .

[34]  Richard H. Friend,et al.  Harvesting Singlet and Triplet Energy in Polymer LEDs , 1999 .

[35]  Stephen R. Forrest,et al.  Interface-limited injection in amorphous organic semiconductors , 2001 .

[36]  W. Stampor,et al.  Electric field effect on luminescence efficiency in 8-hydroxyquinoline aluminum (Alq3) thin films , 1997 .

[37]  D. Fox Physics and Chemistry of the Organic Solid State , 1963 .

[38]  Dmitri B. Papkovsky,et al.  New oxygen sensors and their application to biosensing , 1995 .

[39]  Jan Kalinowski,et al.  Kinetics of charge carrier recombination in organic light-emitting diodes , 1998 .

[40]  H. Baessler,et al.  Exciton reaction at an anthracene/metal interface: Charge transfer , 1971 .

[41]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[42]  Jan Kalinowski,et al.  Organic Light-Emitting Diodes , 2004 .

[43]  G. Jansen,et al.  High resolution Zeeman experiments on singlet, triplet, and quartet states of metalloporphines , 1976 .

[44]  W. Stampor,et al.  Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (III) , 2002 .

[45]  D. Möbius,et al.  Reaction of singlet excitons at an anthracene/metal interface: Energy transfer , 1971 .

[46]  H. Bässler,et al.  CURRENT INJECTION FROM A METAL TO A DISORDERED HOPPING SYSTEM. II. COMPARISON BETWEEN ANALYTIC THEORY AND SIMULATION , 1999 .

[47]  S. Costa,et al.  Photokinetics in tetraphenylporphyrin – molecular oxygen system at gas/solid interfaces: effect of singlet oxygen quenchers on oxygen-induced delayed fluorescence , 2001 .

[48]  V. M. Kenkre Determination of the exciton diffusion constant from variation of quantum yield with penetration length , 1981 .

[49]  Jan Kalinowski,et al.  Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix , 2004 .

[50]  H. Yanagi,et al.  Orientation-dependent phosphorescence from nanocrystals of platinum tetraphenylporphyrin grown on alkali halides , 2003 .

[51]  John R. Miller,et al.  Intramolecular Long-Distance Electron Transfer in Organic Molecules , 1988, Science.

[52]  C. Adachi,et al.  1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. , 2002, Journal of the American Chemical Society.

[53]  H. Bässler,et al.  Localized states and electronic transport in single component organic solids with diagonal disorder , 1981 .

[54]  C. Hauenschild Zyklische Veränderungen an den inkretorischen Drüsenzellen im Prostomium des Polychaeten Platynereis dumerilii als Grundlage der Schwärmperiodizität , 1959 .

[55]  D. Hertel,et al.  Electric field dependent generation of geminate electron–hole pairs in a ladder-type π-conjugated polymer probed by fluorescence quenching and delayed field collection of charge carriers , 2002 .

[56]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[57]  J. Kalinowski,et al.  Highly efficient organic electrophosphorescent light-emitting diodes with a reduced quantum efficiency roll off at large current densities , 2004 .

[58]  T. Tsuboi,et al.  Optical characteristics of PtOEP and Ir(ppy)3 triplet-exciton materials for organic electroluminescence devices , 2003 .

[59]  J. Noolandi,et al.  Theory of photogeneration and fluorescence quenching , 1979 .

[60]  J. G. Simmons,et al.  Space‐Charge Effects on Emission‐Limited Current Flow in Insulators , 1967 .