Thermal conductivity enhancement with different fillers for epoxy resin adhesives

Abstract Heat dissipation is an important issue for electronic devices. In the present work, we prepared eight kinds of thermal adhesives by filling the epoxy resin with natural graphite, copper, aluminum, zinc oxide, boron nitride, aluminum oxide, diamond and silver powders, and measured the thermal conductivity of all samples. The results show the eight fillers can efficiently improve the thermal conductivity of the epoxy resin. Meanwhile, we found the layer-shape filler is more favorable than the ball-shape filler and the sharp-corner-shape filler to enhance the thermal conductivity of epoxy resin, and the low price layer-shape natural graphite-epoxy adhesive had the highest thermal conductivity up to 1.68 W m −1  K −1 at weight 44.3% of the eight thermal adhesives. All the fillers and the cross sections of thermal adhesives morphologies images were characterized by scanning electron microscopy, and the thermal conductivities of all the samples were measured by Hot Disk TPS-2500 thermal constants analyzer.

[1]  Igor Krupa,et al.  Electro-conductive resins filled with graphite for casting applications , 2004 .

[2]  Tian Jian Lu,et al.  Thermal management of high power electronics with phase change cooling , 2000 .

[3]  Shengyu Feng,et al.  Thermal conductivity of silicone rubber filled with ZnO , 2007 .

[4]  Jooheon Kim,et al.  The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles , 2012, Nanotechnology.

[5]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[6]  L. Schwartz Handbook Of Heat Transfer , 2016 .

[7]  Qinjun Kang,et al.  Thermal conductivity enhancement of carbon fiber composites , 2009 .

[8]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[9]  Gerhard Ruffert,et al.  Ein flexibles, mikrostrukturiertes Modul für die Desorption: Der High Efficiency Contactor , 2011 .

[10]  K. Sheng,et al.  Rheology and Thermal Conductivity of Diamond Powder-Filled Liquid Epoxy Encapsulants for Electronic Packaging , 2009, IEEE Transactions on Components and Packaging Technologies.

[11]  A. E. Bergles,et al.  Evolution of cooling technology for electrical, electronic, and microelectronic equipment , 2003 .

[12]  Lixian Sun,et al.  Thermal conductivity enhancement of Ag nanowires on an organic phase change material , 2010 .

[13]  Xingyi Huang,et al.  Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites , 2012 .

[14]  Y. Liang,et al.  Thermal Analysis of the Heat Exchanger for Power Electronic Device with Higher Power Density , 2012 .

[15]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[16]  Jooheon Kim,et al.  The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly(dimethylsiloxane) composites , 2011 .

[17]  Liyu Yang,et al.  Design‐for‐reliability implementation in microelectronics packaging development , 2011 .

[18]  C. Palacio,et al.  Characterization of the surface and interface species formed during the oxidation of aluminum , 1996 .

[19]  David C. Whalley,et al.  THERMAL DESIGN OF HIGH POWER SEMICONDUCTOR PACKAGES FOR AIRCRAFT SYSTEMS , 1999 .

[20]  T. Imai,et al.  The measurement of thermal properties of diamond , 1997 .

[21]  Yi Li,et al.  Review of Recent Advances in Electrically Conductive Adhesive Materials and Technologies in Electronic Packaging , 2008 .

[22]  M. Tanaka,et al.  Thermal conductivity of a polymer composite filled with mixtures of particles , 1987 .

[23]  Y. Agari,et al.  Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity , 1985 .

[24]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[25]  D.D.L. Chung,et al.  Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials , 2009 .

[26]  Kwang-Seong Choi,et al.  Characterization of a Hybrid Cu Paste as an Isotropic Conductive Adhesive , 2011 .

[27]  B. Allard,et al.  Developing an equivalent thermal model for discrete semiconductor packages , 2003 .

[28]  Ching-Ping Wong,et al.  Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging , 1999 .

[29]  K. Paik,et al.  Vertically aligned nickel nanowire/epoxy composite for electrical and thermal conducting material , 2012, 2012 IEEE 62nd Electronic Components and Technology Conference.

[30]  J. Arau,et al.  High-efficient integrated electronic ballast for compact fluorescent lamps , 2006, IEEE Transactions on Power Electronics.

[31]  Yi Li,et al.  Oxidation Prevention and Electrical Property Enhancement of Copper-Filled Isotropically Conductive Adhesives , 2007 .

[32]  Seokwoo Jeon,et al.  Enhanced Thermal Conductivity of Epoxy–Graphene Composites by Using Non‐Oxidized Graphene Flakes with Non‐Covalent Functionalization , 2013, Advanced materials.

[33]  Roshan Jeet Jee Jachuck,et al.  Integrated thermal management techniques for high power electronic devices , 2004 .

[34]  H. Liem,et al.  Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing , 2007 .

[35]  Wenying Zhou Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites , 2011 .

[36]  E. Bekyarova,et al.  Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites , 2008 .