Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays

Using a tin-oleate complex as the precursor and the capping agent, we successfully synthesized ultrafine SnO2 nanospike arrays with diameter 6–15 nm and length 150 nm, growing along the [001] direction from a simple hydrothermal route. The as-obtained SnO2 products were characterized by X-ray powder diffraction, scanning electronic microscopy, transmission electron microscopy, UV-vis absorption spectrum, photoluminescence and Raman spectroscopy. As-synthesized SnO2 nanospike arrays exhibited improved gas sensing performance as compared to bulk SnO2 due to the small grain size-distribution and specific surface properties. The detection limits of the sensor were found to be down to 0.5 ppm for acetone, ethanol and 1.0 ppm for methanol with response time as short as 5 s.

[1]  G. Shen,et al.  Nanowires assembled SnO2 nanopolyhedrons with enhanced gas sensing properties. , 2011, ACS applied materials & interfaces.

[2]  Jing Xu,et al.  Zinc-oleate complex as efficient precursor for 1-D ZnO nanostructures: synthesis and properties , 2011 .

[3]  Daeil Kim,et al.  Effect of humidity and thermal curing of polymer gate dielectrics on the electrical hysteresis of SnO2 nanowire field effect transistors , 2011 .

[4]  I.-Kang Ding,et al.  Photoinduced Electron Transfer in Dye‐Sensitized SnO2 Nanowire Field‐Effect Transistors , 2011 .

[5]  A. Patra,et al.  Surface Defect-Related Luminescence Properties of SnO2 Nanorods and Nanoparticles , 2011 .

[6]  Weiguo Song,et al.  A Parallel Solid-State NMR and Sensor Property Study on Flower-like Nanostructured SnO2 , 2010 .

[7]  Jinwoo Lee,et al.  Ordered Mesoporous SnO2−Based Photoanodes for High-Performance Dye-Sensitized Solar Cells , 2010 .

[8]  Y. Mortazavi,et al.  Alkaline- and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing , 2010 .

[9]  Xuefeng Guo,et al.  Novel sea urchin-like hollow core–shell SnO2 superstructures: Facile synthesis and excellent ethanol sensing performance , 2010 .

[10]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS Nano.

[11]  S. Mathur,et al.  Plasma-Modified SnO2 Nanowires for Enhanced Gas Sensing , 2010 .

[12]  Zeng Wen,et al.  Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism , 2010 .

[13]  Xinyu Xue,et al.  One-Step Synthesis and Gas-Sensing Characteristics of Uniformly Loaded Pt@SnO2 Nanorods , 2010 .

[14]  Jinhua Ye,et al.  Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. , 2010, Inorganic chemistry.

[15]  Huijuan Zhang,et al.  Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. , 2010, Small.

[16]  Yangxuan Xiao,et al.  TiO2‐Coated Multilayered SnO2 Hollow Microspheres for Dye‐Sensitized Solar Cells , 2009 .

[17]  Yichun Liu,et al.  SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties. , 2009, Inorganic chemistry.

[18]  Yong Jia,et al.  Preparation of Porous Tin Oxide Nanotubes Using Carbon Nanotubes as Templates and Their Gas-Sensing Properties , 2009 .

[19]  Alfons Schulte,et al.  A rapid hydrothermal synthesis of rutile SnO2 nanowires , 2009 .

[20]  Po-Chiang Chen,et al.  Devices and chemical sensing applications of metal oxide nanowires , 2009 .

[21]  Sanghoo Park,et al.  Synthesis of one-dimensional SnO2 nanorods via a hydrothermal technique , 2009 .

[22]  Yitai Qian,et al.  Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres , 2008 .

[23]  C. M. Li,et al.  Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor , 2007 .

[24]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[25]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[26]  Kaixun Huang,et al.  Self-assembly synthesis of single-crystalline tin oxide nanostructures by a poly(acrylic acid)-assisted solvothermal process. , 2006, The journal of physical chemistry. B.

[27]  A photoelectrochemical device with a nanostructured SnO2 electrode modified with composite clusters of porphyrin-modified silica nanoparticle and fullerene. , 2006, The journal of physical chemistry. B.

[28]  Y. J. Chen,et al.  Linear Ethanol Sensing of SnO2 Nanorods with Extremely High Sensitivity , 2006 .

[29]  Y. J. Chen,et al.  Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods , 2005 .

[30]  Guanghou Wang,et al.  Synthesis and characterization of SnO2 nanorods , 2005 .

[31]  Sang-Ok Yoon,et al.  Characteristics of SnO2 annealed in reducing atmosphere , 2005 .

[32]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[33]  Yigal Komem,et al.  The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors , 2004 .

[34]  E. Samulski,et al.  Large-Scale, solution-phase growth of single-crystalline SnO2 nanorods. , 2004, Journal of the American Chemical Society.

[35]  E. Longo,et al.  Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature , 2003 .

[36]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[37]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[38]  Guanghou Wang,et al.  Synthesis and characterization of rutile SnO2 nanorods , 2001 .

[39]  J. Freihaut,et al.  Heterogeneous Photocatalytic Oxidation of 1-Butene on SnO2 and TiO2 Films , 1999 .

[40]  K. Yu,et al.  MICROSTRUCTURAL CHANGE OF NANO-SNO2 GRAIN ASSEMBLAGES WITH THE ANNEALING TEMPERATURE , 1997 .

[41]  Udo Weimar,et al.  Morphological analysis of nanocrystalline SnO2 for gas sensor applications , 1996 .

[42]  Cox,et al.  Oxygen vacancies and defect electronic states on the SnO2(110)-1 x 1 surface. , 1988, Physical review. B, Condensed matter.

[43]  P. G. Harrison,et al.  The mechanism of operation of tin(iv) oxide carbon monoxide sensors , 1988, Nature.

[44]  J. Scott Raman Spectrum of SnO2 , 1970 .