A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties

Abstract This paper addresses theoretical considerations behind the algorithmic computation of polynomial multi-degree spline basis functions as presented in Toshniwal et al. (2017) . The approach in Toshniwal et al. (2017) breaks from the reliance on computation of integrals recursively for building B-spline-like basis functions that span a given multi-degree spline space. The gains in efficiency are indisputable; however, the theoretical robustness needs to be examined. In this paper, we show that the construction of Toshniwal et al. (2017) yields linearly independent functions with the minimal support property that span the entire multi-degree spline space and form a convex partition of unity.

[1]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[2]  Tom Lyche,et al.  Tchebycheffian spline spaces over planar T-meshes: Dimension bounds and dimension instabilities , 2019, J. Comput. Appl. Math..

[3]  Carolina Vittoria Beccari,et al.  On multi-degree splines , 2017, Comput. Aided Geom. Des..

[4]  Hendrik Speleers,et al.  ICES REPORT 18-22 November 2018 Multi-degree B-splines : Algorithmic computation and properties by , 2022 .

[5]  G. Mühlbach ECT-B-splines defined by generalized divided differences , 2006 .

[6]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[7]  Juan Manuel Peña,et al.  Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..

[8]  Tom Lyche,et al.  Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .

[9]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[10]  Marie-Laurence Mazure,et al.  Extended Chebyshev piecewise spaces characterised via weight functions , 2007, J. Approx. Theory.

[11]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[12]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[13]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[14]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[15]  Alessandra Sestini,et al.  Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM , 2017 .

[16]  Marie-Laurence Mazure,et al.  Finding all systems of weight functions associated with a given extended Chebyshev space , 2011, J. Approx. Theory.

[17]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[18]  Hendrik Speleers,et al.  Algorithm 999 , 2019, ACM Transactions on Mathematical Software.

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[21]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[22]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[23]  Paolo Costantini,et al.  Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..

[24]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[25]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[26]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[27]  Tina Bosner,et al.  Variable degree polynomial splines are Chebyshev splines , 2013, Adv. Comput. Math..

[28]  G. Mühlbach,et al.  Construction of B-splines for generalized spline spaces generated from local ECT-systems , 2003 .

[29]  Tom Lyche,et al.  Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines , 2016, Appl. Math. Comput..

[30]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[31]  H. Prautzsch,et al.  A new approach to Tchebycheffian B-splines , 1997 .

[32]  Marie-Laurence Mazure,et al.  Constructing totally positive piecewise Chebyshevian B-spline bases , 2018, J. Comput. Appl. Math..

[33]  Xin Li,et al.  A Geometric Approach for Multi-Degree Spline , 2012, Journal of Computer Science and Technology.

[34]  J. M. Peña,et al.  Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .

[35]  Wanqiang Shen,et al.  Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..

[36]  D. Schweikert An Interpolation Curve Using a Spline in Tension , 1966 .

[37]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[38]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[39]  Tom Lyche,et al.  Tchebycheffian B-Splines Revisited: An Introductory Exposition , 2019, Advanced Methods for Geometric Modeling and Numerical Simulation.

[40]  Nira Dyn,et al.  Recurrence relations for Tchebycheffian B-splines , 1988 .

[41]  Tom Lyche,et al.  On the dimension of Tchebycheffian spline spaces over planar T-meshes , 2016, Comput. Aided Geom. Des..

[42]  Wanqiang Shen,et al.  A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..

[43]  Tom Lyche,et al.  A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..

[44]  Ping Yin,et al.  Explicit representations of changeable degree spline basis functions , 2013, J. Comput. Appl. Math..

[45]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[46]  Hendrik Speleers,et al.  Generalized B-Splines in Isogeometric Analysis , 2016 .

[47]  Marie-Laurence Mazure,et al.  Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines , 2001, Comput. Aided Geom. Des..

[48]  Günther Nürnberger,et al.  Generalized Chebyshevian Splines , 1984 .