A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties
暂无分享,去创建一个
Hendrik Speleers | Carla Manni | Thomas J. R. Hughes | Deepesh Toshniwal | Rene R. Hiemstra | T. Hughes | D. Toshniwal | H. Speleers | C. Manni | R. Hiemstra
[1] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[2] Tom Lyche,et al. Tchebycheffian spline spaces over planar T-meshes: Dimension bounds and dimension instabilities , 2019, J. Comput. Appl. Math..
[3] Carolina Vittoria Beccari,et al. On multi-degree splines , 2017, Comput. Aided Geom. Des..
[4] Hendrik Speleers,et al. ICES REPORT 18-22 November 2018 Multi-degree B-splines : Algorithmic computation and properties by , 2022 .
[5] G. Mühlbach. ECT-B-splines defined by generalized divided differences , 2006 .
[6] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[7] Juan Manuel Peña,et al. Shape preserving alternatives to the rational Bézier model , 2001, Comput. Aided Geom. Des..
[8] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[9] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[10] Marie-Laurence Mazure,et al. Extended Chebyshev piecewise spaces characterised via weight functions , 2007, J. Approx. Theory.
[11] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[12] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[13] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[14] Hendrik Speleers,et al. Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..
[15] Alessandra Sestini,et al. Non-polynomial spline alternatives in Isogeometric Symmetric Galerkin BEM , 2017 .
[16] Marie-Laurence Mazure,et al. Finding all systems of weight functions associated with a given extended Chebyshev space , 2011, J. Approx. Theory.
[17] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[18] Hendrik Speleers,et al. Algorithm 999 , 2019, ACM Transactions on Mathematical Software.
[19] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[20] W. J. Studden,et al. Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .
[21] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[22] Thomas W. Sederberg,et al. Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..
[23] Paolo Costantini,et al. Curve and surface construction using variable degree polynomial splines , 2000, Comput. Aided Geom. Des..
[24] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[25] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[26] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[27] Tina Bosner,et al. Variable degree polynomial splines are Chebyshev splines , 2013, Adv. Comput. Math..
[28] G. Mühlbach,et al. Construction of B-splines for generalized spline spaces generated from local ECT-systems , 2003 .
[29] Tom Lyche,et al. Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines , 2016, Appl. Math. Comput..
[30] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[31] H. Prautzsch,et al. A new approach to Tchebycheffian B-splines , 1997 .
[32] Marie-Laurence Mazure,et al. Constructing totally positive piecewise Chebyshevian B-spline bases , 2018, J. Comput. Appl. Math..
[33] Xin Li,et al. A Geometric Approach for Multi-Degree Spline , 2012, Journal of Computer Science and Technology.
[34] J. M. Peña,et al. Critical Length for Design Purposes and Extended Chebyshev Spaces , 2003 .
[35] Wanqiang Shen,et al. Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..
[36] D. Schweikert. An Interpolation Curve Using a Spline in Tension , 1966 .
[37] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[38] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[39] Tom Lyche,et al. Tchebycheffian B-Splines Revisited: An Introductory Exposition , 2019, Advanced Methods for Geometric Modeling and Numerical Simulation.
[40] Nira Dyn,et al. Recurrence relations for Tchebycheffian B-splines , 1988 .
[41] Tom Lyche,et al. On the dimension of Tchebycheffian spline spaces over planar T-meshes , 2016, Comput. Aided Geom. Des..
[42] Wanqiang Shen,et al. A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..
[43] Tom Lyche,et al. A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..
[44] Ping Yin,et al. Explicit representations of changeable degree spline basis functions , 2013, J. Comput. Appl. Math..
[45] Hendrik Speleers,et al. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .
[46] Hendrik Speleers,et al. Generalized B-Splines in Isogeometric Analysis , 2016 .
[47] Marie-Laurence Mazure,et al. Quasi-Chebyshev splines with connection matrices: application to variable degree polynomial splines , 2001, Comput. Aided Geom. Des..
[48] Günther Nürnberger,et al. Generalized Chebyshevian Splines , 1984 .