A Survey of Heterogeneous Information Network Analysis

Most real systems consist of a large number of interacting, multi-typed components, while most contemporary researches model them as homogeneous information networks, without distinguishing different types of objects and links in the networks. Recently, more and more researchers begin to consider these interconnected, multi-typed data as heterogeneous information networks, and develop structural analysis approaches by leveraging the rich semantic meaning of structural types of objects and links in the networks. Compared to widely studied homogeneous information network, the heterogeneous information network contains richer structure and semantic information, which provides plenty of opportunities as well as a lot of challenges for data mining. In this paper, we provide a survey of heterogeneous information network analysis. We will introduce basic concepts of heterogeneous information network analysis, examine its developments on different data mining tasks, discuss some advanced topics, and point out some future research directions.

[1]  Yizhou Sun,et al.  Mining heterogeneous information networks: a structural analysis approach , 2013, SKDD.

[2]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[3]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[4]  Philip S. Yu,et al.  Integrating Clustering and Ranking on Hybrid Heterogeneous Information Network , 2013, PAKDD.

[5]  Philip S. Yu,et al.  Relevance search in heterogeneous networks , 2012, EDBT '12.

[6]  Srinivasan Parthasarathy,et al.  What Links Alice and Bob?: Matching and Ranking Semantic Patterns in Heterogeneous Networks , 2016, WWW.

[7]  Yunming Ye,et al.  HAR: Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search , 2012, SDM.

[8]  Jiawei Han,et al.  A probabilistic model for linking named entities in web text with heterogeneous information networks , 2014, SIGMOD Conference.

[9]  Bo Zhao,et al.  Collective topic modeling for heterogeneous networks , 2011, SIGIR '11.

[10]  Wei Wang,et al.  Top-k similarity search in heterogeneous information networks with x-star network schema , 2015, Expert Syst. Appl..

[11]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[12]  S YuPhilip,et al.  A framework for dynamic link prediction in heterogeneous networks , 2014 .

[13]  Yizhou Sun,et al.  Clustering and Ranking in Heterogeneous Information Networks via Gamma-Poisson Model , 2015, SDM.

[14]  Yizhou Sun,et al.  User guided entity similarity search using meta-path selection in heterogeneous information networks , 2012, CIKM.

[15]  Philip S. Yu,et al.  cluTM: Content and Link Integrated Topic Model on Heterogeneous Information Networks , 2015, WAIM.

[16]  Jie Tang,et al.  ArnetMiner: extraction and mining of academic social networks , 2008, KDD.

[17]  Liang Chen,et al.  Trust-aware media recommendation in heterogeneous social networks , 2013, World Wide Web.

[18]  U LeongHou,et al.  PathSimExt: Revisiting PathSim in Heterogeneous Information Networks , 2014, WAIM.

[19]  Michael R. Lyu,et al.  Learning to recommend with social trust ensemble , 2009, SIGIR.

[20]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[21]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[22]  Bin Wu,et al.  HMGraph OLAP: a novel framework for multi-dimensional heterogeneous network analysis , 2012, DOLAP '12.

[23]  Jiawei Han,et al.  Mining advisor-advisee relationships from research publication networks , 2010, KDD.

[24]  Philip S. Yu,et al.  Integrating meta-path selection with user-guided object clustering in heterogeneous information networks , 2012, KDD.

[25]  Philip S. Yu,et al.  Towards Community Detection in Locally Heterogeneous Networks , 2011, SDM.

[26]  Philip S. Yu,et al.  Item Recommendation for Emerging Online Businesses , 2016, IJCAI.

[27]  Yizhou Sun,et al.  RankClus: integrating clustering with ranking for heterogeneous information network analysis , 2009, EDBT '09.

[28]  Hongyuan Zha,et al.  Co-ranking Authors and Documents in a Heterogeneous Network , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[29]  Junwei Wang,et al.  ComSoc: adaptive transfer of user behaviors over composite social network , 2012, KDD.

[30]  Philip S. Yu,et al.  COSNET: Connecting Heterogeneous Social Networks with Local and Global Consistency , 2015, KDD.

[31]  Philip S. Yu,et al.  HeteSim: A General Framework for Relevance Measure in Heterogeneous Networks , 2013, IEEE Transactions on Knowledge and Data Engineering.

[32]  Philip S. Yu,et al.  Influence Maximization Across Partially Aligned Heterogenous Social Networks , 2015, PAKDD.

[33]  Raj Bhatnagar,et al.  A game theoretic framework for heterogenous information network clustering , 2011, KDD.

[34]  Wei Chen,et al.  Overlapping Community Detection in Directed Heterogeneous Social Network , 2015, WAIM.

[35]  Philip S. Yu,et al.  Meta-path based multi-network collective link prediction , 2014, KDD.

[36]  Wei Pang,et al.  Hete-CF: Social-Based Collaborative Filtering Recommendation Using Heterogeneous Relations , 2014, 2014 IEEE International Conference on Data Mining.

[37]  Hong Cheng,et al.  Graph Clustering Based on Structural/Attribute Similarities , 2009, Proc. VLDB Endow..

[38]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[39]  Yizhou Sun,et al.  Personalized entity recommendation: a heterogeneous information network approach , 2014, WSDM.

[40]  Philip S. Yu,et al.  Ranking-based Clustering on General Heterogeneous Information Networks by Network Projection , 2014, CIKM.

[41]  Lei Zou,et al.  gStore: a graph-based SPARQL query engine , 2014, The VLDB Journal.

[42]  Chen Yang,et al.  Scientific Collaborator Recommendation in Heterogeneous Bibliographic Networks , 2015, 2015 48th Hawaii International Conference on System Sciences.

[43]  Yizhou Sun,et al.  Meta-Path-Based Search and Mining in Heterogeneous Information Networks , 2013 .

[44]  Huan Liu,et al.  Exploiting homophily effect for trust prediction , 2013, WSDM.

[45]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[46]  F. Feltus,et al.  Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice[C][W][OA] , 2011, Plant Physiology.

[47]  Philip S. Yu,et al.  Multi-label classification by mining label and instance correlations from heterogeneous information networks , 2013, KDD.

[48]  Christos Faloutsos,et al.  PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[49]  Bonnie Berger,et al.  Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology , 2007, RECOMB.

[50]  Xiang Li,et al.  Learning Hierarchical Relationships among Partially Ordered Objects with Heterogeneous Attributes and Links , 2012, SDM.

[51]  Clare R. Voss,et al.  ClusType: Effective Entity Recognition and Typing by Relation Phrase-Based Clustering , 2015, KDD.

[52]  Philip S. Yu,et al.  Information Diffusion at Workplace , 2016, CIKM.

[53]  Jiawei Han,et al.  Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network , 2015, SDM.

[54]  Ludovic Lietard,et al.  Classification of Message Spreading in a Heterogeneous Social Network , 2014, IPMU.

[55]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[56]  Ni Lao,et al.  Relational retrieval using a combination of path-constrained random walks , 2010, Machine Learning.

[57]  Philip S. Yu,et al.  Predicting Neighbor Distribution in Heterogeneous Information Networks , 2015, SDM.

[58]  Ling Liu,et al.  Activity-edge centric multi-label classification for mining heterogeneous information networks , 2014, KDD.

[59]  Bamshad Mobasher,et al.  Hybrid Recommendation in Heterogeneous Networks , 2014, UMAP.

[60]  Philip S. Yu,et al.  Integrating heterogeneous information via flexible regularization framework for recommendation , 2015, Knowledge and Information Systems.

[61]  Bin Wu,et al.  Link Prediction in Schema-Rich Heterogeneous Information Network , 2016, PAKDD.

[62]  Philip S. Yu,et al.  Constrained-meta-path-based ranking in heterogeneous information network , 2016, Knowledge and Information Systems.

[63]  Clare R. Voss,et al.  Scalable Topical Phrase Mining from Text Corpora , 2014, Proc. VLDB Endow..

[64]  Philip S. Yu,et al.  Object Distinction: Distinguishing Objects with Identical Names , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[65]  Ludovic Denoyer,et al.  Learning latent representations of nodes for classifying in heterogeneous social networks , 2014, WSDM.

[66]  Philip S. Yu,et al.  Discover Tipping Users For Cross Network Influencing , 2016 .

[67]  Philip S. Yu,et al.  Identify Online Store Review Spammers via Social Review Graph , 2012, TIST.

[68]  Bo Zhao,et al.  Probabilistic topic models with biased propagation on heterogeneous information networks , 2011, KDD.

[69]  Jonathan Cohen,et al.  Graph Twiddling in a MapReduce World , 2009, Computing in Science & Engineering.

[70]  Nitesh V. Chawla,et al.  Predicting Links in Multi-relational and Heterogeneous Networks , 2012, 2012 IEEE 12th International Conference on Data Mining.

[71]  Jian Liu,et al.  Dual Similarity Regularization for Recommendation , 2016, PAKDD.

[72]  Jiawei Han,et al.  Learning influence from heterogeneous social networks , 2012, Data Mining and Knowledge Discovery.

[73]  Jiawei Han,et al.  Community Distribution Outlier Detection in Heterogeneous Information Networks , 2013, ECML/PKDD.

[74]  Piotr Indyk,et al.  Enhanced hypertext categorization using hyperlinks , 1998, SIGMOD '98.

[75]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[76]  Philip S. Yu,et al.  Inferring anchor links across multiple heterogeneous social networks , 2013, CIKM.

[77]  Zhenyu Wu,et al.  Tag Co-occurrence Relationship Prediction in Heterogeneous Information Networks , 2013, 2013 International Conference on Parallel and Distributed Systems.

[78]  Philip S. Yu,et al.  Multiple Anonymized Social Networks Alignment , 2015, 2015 IEEE International Conference on Data Mining.

[79]  Harald Steck,et al.  Circle-based recommendation in online social networks , 2012, KDD.

[80]  Jiebo Luo,et al.  SocialSpamGuard: A Data Mining-Based Spam Detection System for Social Media Networks , 2011, Proc. VLDB Endow..

[81]  Philip S. Yu,et al.  PathSim , 2011, Proc. VLDB Endow..

[82]  Yizhou Sun,et al.  NewsNetExplorer: automatic construction and exploration of news information networks , 2014, SIGMOD Conference.

[83]  Pedro M. Domingos,et al.  Ontology Matching: A Machine Learning Approach , 2004, Handbook on Ontologies.

[84]  Jiebo Luo,et al.  LikeMiner: a system for mining the power of 'like' in social media networks , 2011, KDD.

[85]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[86]  Philip S. Yu,et al.  InfoNetOLAPer: Integrating InfoNetWarehouse and InfoNetCube with InfoNetOLAP , 2011, Proc. VLDB Endow..

[87]  David F. Gleich,et al.  A multithreaded algorithm for network alignment via approximate matching , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[88]  Yizhou Sun,et al.  Recommendation in heterogeneous information networks with implicit user feedback , 2013, RecSys.

[89]  Qian Wang,et al.  LSA-PTM: A Propagation-Based Topic Model Using Latent Semantic Analysis on Heterogeneous Information Networks , 2013, WAIM.

[90]  Philip S. Yu,et al.  On Dynamic Link Inference in Heterogeneous Networks , 2012, SDM.

[91]  Yizhou Sun,et al.  Graph Regularized Transductive Classification on Heterogeneous Information Networks , 2010, ECML/PKDD.

[92]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  Ioannis Konstas,et al.  On social networks and collaborative recommendation , 2009, SIGIR.

[94]  Lise Getoor,et al.  Link mining: a survey , 2005, SKDD.

[95]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[96]  Philip S. Yu,et al.  Unsupervised learning on k-partite graphs , 2006, KDD '06.

[97]  Philip S. Yu,et al.  Spectral clustering for multi-type relational data , 2006, ICML.

[98]  Feiping Nie,et al.  Trust prediction via aggregating heterogeneous social networks , 2012, CIKM.

[99]  Philip S. Yu,et al.  HRank: A Path Based Ranking Method in Heterogeneous Information Network , 2014, WAIM.

[100]  Charu C. Aggarwal,et al.  On clustering heterogeneous social media objects with outlier links , 2012, WSDM '12.

[101]  Jiawei Han,et al.  Multi-View Clustering via Joint Nonnegative Matrix Factorization , 2013, SDM.

[102]  Jiawei Han,et al.  Constructing topical hierarchies in heterogeneous information networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[103]  Lawrence B. Holder,et al.  Graph-Based Data Mining , 2000, IEEE Intell. Syst..

[104]  Gong Chen,et al.  AMETHYST: a system for mining and exploring topical hierarchies of heterogeneous data , 2013, KDD.

[105]  Thomas Seidl,et al.  Density-Based Subspace Clustering in Heterogeneous Networks , 2014, ECML/PKDD.

[106]  Philip S. Yu,et al.  Integrated Anchor and Social Link Predictions across Social Networks , 2015, IJCAI.

[107]  Philip S. Yu,et al.  Predicting Social Links for New Users across Aligned Heterogeneous Social Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[108]  Alneu de Andrade Lopes,et al.  Inductive Model Generation for Text Categorization Using a Bipartite Heterogeneous Network , 2012, 2012 IEEE 12th International Conference on Data Mining.

[109]  Charu C. Aggarwal,et al.  Ranking in heterogeneous social media , 2014, WSDM.

[110]  Ronald Rousseau,et al.  Social network analysis: a powerful strategy, also for the information sciences , 2002, J. Inf. Sci..

[111]  Philip S. Yu,et al.  NCR: A Scalable Network-Based Approach to Co-Ranking in Question-and-Answer Sites , 2014, CIKM.

[112]  Philip S. Yu,et al.  Organizational Chart Inference , 2015, KDD.

[113]  Thomas Wilhelm,et al.  What is a complex graph , 2008 .

[114]  Michael R. Lyu,et al.  A generalized Co-HITS algorithm and its application to bipartite graphs , 2009, KDD.

[115]  Tsuyoshi Murata,et al.  Transductive Classification on Heterogeneous Information Networks with Edge Betweenness-based Normalization , 2016, WSDM.

[116]  Philip S. Yu,et al.  Synergistic partitioning in multiple large scale social networks , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[117]  Jiawei Han,et al.  On detecting Association-Based Clique Outliers in heterogeneous information networks , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[118]  Jiawei Han,et al.  A Feature-Enhanced Ranking-Based Classifier for Multimodal Data and Heterogeneous Information Networks , 2013, 2013 IEEE 13th International Conference on Data Mining.

[119]  Xin Zheng,et al.  Characterizing and predicting community members from evolutionary and heterogeneous networks , 2008, CIKM '08.

[120]  Gunnar W. Klau,et al.  A new graph-based method for pairwise global network alignment , 2009, BMC Bioinformatics.

[121]  Jiawei Han,et al.  Graph cube: on warehousing and OLAP multidimensional networks , 2011, SIGMOD '11.

[122]  M. Tamer Özsu A survey of RDF data management systems , 2016, Frontiers of Computer Science.

[123]  Juan-Zi Li,et al.  Mining competitive relationships by learning across heterogeneous networks , 2012, CIKM.

[124]  Philip S. Yu,et al.  A framework for dynamic link prediction in heterogeneous networks , 2014, Stat. Anal. Data Min..

[125]  Erhard Rahm,et al.  Similarity flooding: a versatile graph matching algorithm and its application to schema matching , 2002, Proceedings 18th International Conference on Data Engineering.

[126]  Jiawei Han,et al.  Mining Heterogeneous Information Networks by Exploring the Power of Links , 2009, ALT.

[127]  Philip S. Yu,et al.  Meta path-based collective classification in heterogeneous information networks , 2012, CIKM.

[128]  Lyle H. Ungar,et al.  Statistical Relational Learning for Link Prediction , 2003 .

[129]  Bo Zhao,et al.  A Bayesian Approach to Discovering Truth from Conflicting Sources for Data Integration , 2012, Proc. VLDB Endow..

[130]  Bo Zhao,et al.  Community evolution detection in dynamic heterogeneous information networks , 2010, MLG '10.

[131]  Philip S. Yu,et al.  Co-clustering by block value decomposition , 2005, KDD '05.

[132]  Guang Yang,et al.  Relevance Search on Signed Heterogeneous Information Network Based on Meta-path Factorization , 2015, WAIM.

[133]  Xiaoming Zhang,et al.  Future Influence Ranking of Scientific Literature , 2014, SDM.

[134]  George Colliat,et al.  OLAP, relational, and multidimensional database systems , 1996, SGMD.

[135]  Bin Wu,et al.  Relevance Measure in Large-Scale Heterogeneous Networks , 2014, APWeb.

[136]  Qingzhong Li,et al.  Integrating meta-path selection with user-preference for top-k relevant search in heterogeneous information networks , 2014, Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[137]  Srinivasan Parthasarathy,et al.  Scalable global alignment for multiple biological networks , 2012, BMC Bioinformatics.

[138]  Jiawei Han,et al.  ClusCite: effective citation recommendation by information network-based clustering , 2014, KDD.

[139]  Charu C. Aggarwal,et al.  Relation Strength-Aware Clustering of Heterogeneous Information Networks with Incomplete Attributes , 2012, Proc. VLDB Endow..

[140]  Huan Liu,et al.  Community evolution in dynamic multi-mode networks , 2008, KDD.

[141]  Nitesh V. Chawla,et al.  Link Prediction and Recommendation across Heterogeneous Social Networks , 2012, 2012 IEEE 12th International Conference on Data Mining.

[142]  Rajat Raina,et al.  Learning relevance from heterogeneous social network and its application in online targeting , 2011, SIGIR.

[143]  Xing Xie,et al.  Privacy Risk in Anonymized Heterogeneous Information Networks , 2014, EDBT.

[144]  Shu-Tao Xia,et al.  Link Prediction in Aligned Heterogeneous Networks , 2015, PAKDD.

[145]  Yizhou Sun,et al.  Ranking-based clustering of heterogeneous information networks with star network schema , 2009, KDD.

[146]  Philip S. Yu,et al.  HeteRecom: a semantic-based recommendation system in heterogeneous networks , 2012, KDD.

[147]  Heng Ji,et al.  Tweet Ranking Based on Heterogeneous Networks , 2012, COLING.

[148]  James Bailey,et al.  Exploiting Transitive Similarity and Temporal Dynamics for Similarity Search in Heterogeneous Information Networks , 2014, DASFAA.

[149]  Jiawei Han,et al.  Mining topic-level influence in heterogeneous networks , 2010, CIKM.

[150]  Ted G. Lewis,et al.  Network Science: Theory and Applications , 2009 .

[151]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[152]  Lise Getoor,et al.  Collective entity resolution in relational data , 2007, TKDD.

[153]  François Poulet,et al.  Integrating heterogeneous information within a social network for detecting communities , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[154]  Jiawei Han,et al.  Text Classification with Heterogeneous Information Network Kernels , 2016, AAAI.

[155]  Philip S. Yu,et al.  Influence and similarity on heterogeneous networks , 2012, CIKM.

[156]  Philip S. Yu,et al.  Top-k Similarity Join in Heterogeneous Information Networks , 2015, IEEE Transactions on Knowledge and Data Engineering.

[157]  Yizhou Sun,et al.  Mining Heterogeneous Information Networks: Principles and Methodologies , 2012, Mining Heterogeneous Information Networks: Principles and Methodologies.

[158]  Yizhou Sun,et al.  Query-driven discovery of semantically similar substructures in heterogeneous networks , 2012, KDD.

[159]  Roger Guimerà,et al.  Extracting the hierarchical organization of complex systems , 2007, Proceedings of the National Academy of Sciences.

[160]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[161]  Philip S. Yu,et al.  Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks , 2015, CIKM.

[162]  Jiawei Han,et al.  Query-Based Outlier Detection in Heterogeneous Information Networks , 2015, EDBT.

[163]  Congcong Li,et al.  An Efficient Drug-Target Interaction Mining Algorithm in Heterogeneous Biological Networks , 2014, PAKDD Workshops.

[164]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[165]  Jiawei Han,et al.  Mining Quality Phrases from Massive Text Corpora , 2015, SIGMOD Conference.

[166]  Philip S. Yu,et al.  Collective Prediction of Multiple Types of Links in Heterogeneous Information Networks , 2014, 2014 IEEE International Conference on Data Mining.

[167]  S. R,et al.  Data Mining with Big Data , 2017, 2017 11th International Conference on Intelligent Systems and Control (ISCO).

[168]  Qiaozhu Mei,et al.  PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks , 2015, KDD.

[169]  Charu C. Aggarwal,et al.  Co-author Relationship Prediction in Heterogeneous Bibliographic Networks , 2011, 2011 International Conference on Advances in Social Networks Analysis and Mining.

[170]  Roded Sharan,et al.  Fast and Accurate Alignment of Multiple Protein Networks , 2008, RECOMB.

[171]  Francesco Bonchi,et al.  Cold start link prediction , 2010, KDD.

[172]  Jiawei Han,et al.  Mining Query-Based Subnetwork Outliers in Heterogeneous Information Networks , 2014, 2014 IEEE International Conference on Data Mining.

[173]  Jiawei Han,et al.  Ranking-based classification of heterogeneous information networks , 2011, KDD.

[174]  Philip S. Yu,et al.  Partial Network Alignment with Anchor Meta Path and Truncated Generic Stable Matching , 2015, ArXiv.

[175]  Yizhou Sun,et al.  Meta-Path-Based Ranking with Pseudo Relevance Feedback on Heterogeneous Graph for Citation Recommendation , 2014, CIKM.

[176]  Gerhard Weikum,et al.  Graffiti: graph-based classification in heterogeneous networks , 2011, World Wide Web.

[177]  Jiawei Han,et al.  Citation Prediction in Heterogeneous Bibliographic Networks , 2012, SDM.

[178]  Danai Koutra,et al.  BIG-ALIGN: Fast Bipartite Graph Alignment , 2013, 2013 IEEE 13th International Conference on Data Mining.

[179]  Laks V. S. Lakshmanan,et al.  HeteroMF: recommendation in heterogeneous information networks using context dependent factor models , 2013, WWW.

[180]  Philip S. Yu,et al.  Discover Tipping Users for Cross Network Influencing (Invited Paper) , 2016, 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI).

[181]  Qiang Yang,et al.  Modeling the dynamics of composite social networks , 2013, KDD.

[182]  Chen Luo,et al.  HetPathMine: A Novel Transductive Classification Algorithm on Heterogeneous Information Networks , 2014, ECIR.

[183]  Wei Fan,et al.  Query-dependent cross-domain ranking in heterogeneous network , 2011, Knowledge and Information Systems.

[184]  Ni Lao,et al.  Fast query execution for retrieval models based on path-constrained random walks , 2010, KDD.

[185]  Philip S. Yu,et al.  PCT: Partial Co-Alignment of Social Networks , 2016, WWW.

[186]  Ling Liu,et al.  Social influence based clustering of heterogeneous information networks , 2013, KDD.

[187]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[188]  Charu C. Aggarwal,et al.  When will it happen?: relationship prediction in heterogeneous information networks , 2012, WSDM '12.

[189]  Philip S. Yu,et al.  HeteroSales: Utilizing Heterogeneous Social Networks to Identify the Next Enterprise Customer , 2016, WWW.

[190]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[191]  Philip S. Yu,et al.  Truth Discovery with Multiple Conflicting Information Providers on the Web , 2007, IEEE Transactions on Knowledge and Data Engineering.

[192]  Philip S. Yu,et al.  Community Detection for Emerging Networks , 2015, SDM.

[193]  Yun Chi,et al.  Combining link and content for community detection: a discriminative approach , 2009, KDD.

[194]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[195]  Yunming Ye,et al.  MultiRank: co-ranking for objects and relations in multi-relational data , 2011, KDD.

[196]  Yizhou Sun,et al.  Research-insight: providing insight on research by publication network analysis , 2013, SIGMOD '13.

[197]  Philip S. Yu,et al.  Transferring heterogeneous links across location-based social networks , 2014, WSDM.

[198]  Yizhou Sun,et al.  RelSim: Relation Similarity Search in Schema-Rich Heterogeneous Information Networks , 2016, SDM.

[199]  Chen Luo,et al.  Semi-supervised Clustering on Heterogeneous Information Networks , 2014, PAKDD.

[200]  Dan Roth,et al.  Incorporating World Knowledge to Document Clustering via Heterogeneous Information Networks , 2015, KDD.

[201]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[202]  Wahiba Bahsoun,et al.  On ranking relevant entities in heterogeneous networks using a language-based model , 2013, J. Assoc. Inf. Sci. Technol..

[203]  Bo Gao,et al.  PatentMiner: topic-driven patent analysis and mining , 2012, KDD.

[204]  Jon M. Kleinberg,et al.  Transfer Learning to Infer Social Ties across Heterogeneous Networks , 2016, ACM Trans. Inf. Syst..

[205]  Reynold Cheng,et al.  Discovering Meta-Paths in Large Heterogeneous Information Networks , 2015, WWW.