Sequential experimentation by evolutionary algorithms

[1]  A. E. Eiben,et al.  From evolutionary computation to the evolution of things , 2015, Nature.

[2]  Douglas B Kell,et al.  Scientific discovery as a combinatorial optimisation problem: How best to navigate the landscape of possible experiments? , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[3]  L. D. Whitley,et al.  Efficient retrieval of landscape Hessian: forced optimal covariance adaptive learning. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Joshua D. Knowles,et al.  'Hang On a Minute': Investigations on the Effects of Delayed Objective Functions in Multiobjective Optimization , 2013, EMO.

[5]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[6]  Ofer M. Shir,et al.  Accelerated optimization and automated discovery with covariance matrix adaptation for experimental quantum control , 2009 .

[7]  Günter Rudolph,et al.  Contemporary Evolution Strategies , 1995, ECAL.

[8]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Ingo Rechenberg,et al.  Case studies in evolutionary experimentation and computation , 2000 .

[10]  Ofer M. Shir,et al.  Quantum control experiments as a testbed for evolutionary multi-objective algorithms , 2012, Genetic Programming and Evolvable Machines.

[11]  Joshua D. Knowles,et al.  On Handling Ephemeral Resource Constraints in Evolutionary Search , 2013, Evolutionary Computation.

[12]  Joshua D. Knowles Closed-loop evolutionary multiobjective optimization , 2009, IEEE Computational Intelligence Magazine.