Precise Inference and Characterization of Structural Organization (PICASO) of tissue from molecular diffusion

Abstract Inferring the microstructure of complex media from the diffusive motion of molecules is a challenging problem in diffusion physics. In this paper, we introduce a novel representation of diffusion MRI (dMRI) signal from tissue with spatially‐varying diffusivity using a diffusion disturbance function. This disturbance function contains information about the (intra‐voxel) spatial fluctuations in diffusivity due to restrictions, hindrances and tissue heterogeneity of the underlying tissue substrate. We derive the short‐ and long‐range disturbance coefficients from this disturbance function to characterize the tissue structure and organization. Moreover, we provide an exact relation between the disturbance coefficients and the time‐varying moments of the diffusion propagator, as well as their relation to specific tissue microstructural information such as the intra‐axonal volume fraction and the apparent axon radius. The proposed approach is quite general and can model dMRI signal for any type of gradient sequence (rectangular, oscillating, etc.) without using the Gaussian phase approximation. The relevance of the proposed PICASO model is explored using Monte‐Carlo simulations and in‐vivo dMRI data. The results show that the estimated disturbance coefficients can distinguish different types of microstructural organization of axons. HighlightsWe propose a new approach for characterizing tissue microstructure using diffusion MRI that we call PICASO.We introduce a structural disturbance function to represent inhomogeneous tissue structures.We present the relation between the structural disturbance function and the diffusion propagators.The structural disturbance function can be estimated using the diffusion MRI measurements.PICASO is able to distinguish different axonal packing structures using simulations and in‐vivo data.

[1]  Scott N. Hwang,et al.  Biexponential diffusion attenuation in the rat spinal cord: Computer simulations based on anatomic images of axonal architecture , 2002, Magnetic resonance in medicine.

[2]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[3]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[4]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[5]  Sune Nørhøj Jespersen,et al.  Equivalence of double and single wave vector diffusion contrast at low diffusion weighting , 2012, NMR in biomedicine.

[6]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[7]  A. Csik,et al.  Transition from anomalous kinetics toward Fickian diffusion for Si dissolution into amorphous Ge , 2008 .

[8]  Peter J Basser,et al.  Anisotropy induced by macroscopic boundaries: surface-normal mapping using diffusion-weighted imaging. , 2008, Biophysical journal.

[9]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[10]  Peter J Basser,et al.  Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. , 2006, Journal of magnetic resonance.

[11]  T. Hendler,et al.  High b‐value q‐space analyzed diffusion‐weighted MRI: Application to multiple sclerosis , 2002, Magnetic resonance in medicine.

[12]  M. Koch,et al.  A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. , 2010, Journal of magnetic resonance.

[13]  V. Kiselev,et al.  Effective medium theory of a diffusion‐weighted signal , 2010, NMR in biomedicine.

[14]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[15]  Rachid Deriche,et al.  Model-Free and Analytical EAP Reconstruction via Spherical Polar Fourier Diffusion MRI , 2010, MICCAI.

[16]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[17]  Rachid Deriche,et al.  Higher-Order Tensors in Diffusion Imaging , 2014, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data.

[18]  Massimiliano Valentini,et al.  Applications of Pulsed Field Gradient Spin−Echo Measurements to the Determination of Molecular Diffusion (and Thus Size) in Organometallic Chemistry , 2000 .

[19]  C. H. Neuman Spin echo of spins diffusing in a bounded medium , 1974 .

[20]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[21]  Harvey Thomas Banks,et al.  Identification and control in systems governed by partial differential equations , 1993 .

[22]  Peter J Basser,et al.  Scaling laws for myelinated axons derived from an electrotonic core-conductor model. , 2004, Journal of integrative neuroscience.

[23]  Cheng Guan Koay,et al.  Nuclear magnetic resonance characterization of general compartment size distributions , 2011 .

[24]  Carlo Pierpaoli,et al.  Mean apparent propagator (MAP) MRI: A novel diffusion imaging method for mapping tissue microstructure , 2013, NeuroImage.

[25]  J. Bouchaud,et al.  Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications , 1990 .

[26]  S. Havlin,et al.  Diffusion in disordered media , 1991 .

[27]  Denis Le Bihan,et al.  A finite elements method to solve the Bloch-Torrey equation applied to diffusion magnetic resonance imaging , 2014, J. Comput. Phys..

[28]  R. Turner,et al.  Diffusion MR imaging: clinical applications. , 1992, AJR. American journal of roentgenology.

[29]  H. C. Torrey Bloch Equations with Diffusion Terms , 1956 .

[30]  Scott N. Hwang,et al.  An image‐based finite difference model for simulating restricted diffusion , 2003, Magnetic resonance in medicine.

[31]  Daniel Topgaard,et al.  Experimental determination of pore shape and size using q-space NMR microscopy in the long diffusion-time limit. , 2003, Magnetic resonance imaging.

[32]  A. MacKay,et al.  Magnetic resonance imaging of myelin , 2007, Neurotherapeutics.

[33]  P. Rakić,et al.  Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey , 1990, The Journal of comparative neurology.

[34]  Joseph A. Helpern,et al.  Random walk with barriers , 2010, Nature physics.

[35]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[36]  Stephan E Maier,et al.  Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range. , 2006, Magnetic resonance imaging.

[37]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[38]  D. Topgaard,et al.  Determination of the self-diffusion coefficient of intracellular water using PGSE NMR with variable gradient pulse length. , 2009, Journal of magnetic resonance.

[39]  Cheng Guan Koay,et al.  Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus , 2012, NeuroImage.

[40]  Evren Özarslan,et al.  Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR , 2009 .

[41]  S. Uṇṇikrishṇa Pillai,et al.  Spectrum Estimation and System Identification , 1993 .

[42]  Carl-Fredrik Westin,et al.  Estimating Diffusion Propagator and Its Moments Using Directional Radial Basis Functions , 2015, IEEE Transactions on Medical Imaging.

[43]  Martin,et al.  Atomic mobility in Cahn's diffusion model. , 1990, Physical review. B, Condensed matter.

[44]  V. Isakov Appendix -- Function Spaces , 2017 .

[45]  Nir Sochen,et al.  Modeling of the diffusion MR signal in calibrated model systems and nerves , 2013, NMR in biomedicine.

[46]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[47]  Peter J Basser,et al.  MR diffusion - "diffraction" phenomenon in multi-pulse-field-gradient experiments. , 2007, Journal of magnetic resonance.

[48]  Derek K. Jones,et al.  Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter , 2016, NeuroImage.

[49]  Jelle Veraart,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter , 2016, NeuroImage.

[50]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[51]  Simon K. Warfield,et al.  Characterizing the DIstribution of Anisotropic MicrO-structural eNvironments with Diffusion-Weighted Imaging (DIAMOND) , 2013, MICCAI.

[52]  A. Scheibel,et al.  Fiber composition of the human corpus callosum , 1992, Brain Research.

[53]  W. Rushton A theory of the effects of fibre size in medullated nerve , 1951, The Journal of physiology.

[54]  Valerij G Kiselev,et al.  Is the “biexponential diffusion” biexponential? , 2007, Magnetic resonance in medicine.

[55]  Julien Cohen-Adad,et al.  The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter , 2015, NeuroImage.

[56]  Edwin J R van Beek,et al.  Investigating 3He diffusion NMR in the lungs using finite difference simulations and in vivo PGSE experiments. , 2004, Journal of magnetic resonance.

[57]  Denis S Grebenkov,et al.  Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. , 2010, Journal of magnetic resonance.

[58]  E. Anderson,et al.  Self‐Diffusion Studies by Means of Nuclear Magnetic Resonance Spin‐Echo Techniques , 1963 .

[59]  Carlos Torres-Verdín,et al.  Comparison of NMR simulations of porous media derived from analytical and voxelized representations. , 2009, Journal of magnetic resonance.

[60]  Peter J Basser,et al.  Microscopic anisotropy revealed by NMR double pulsed field gradient experiments with arbitrary timing parameters. , 2008, The Journal of chemical physics.

[61]  P. Basser,et al.  Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI , 2009 .

[62]  Denis S. Grebenkov,et al.  A fast random walk algorithm for computing diffusion-weighted NMR signals in multi-scale porous media: A feasibility study for a Menger sponge , 2013 .

[63]  Schwartz,et al.  Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. , 1993, Physical review. B, Condensed matter.

[64]  W. Mali,et al.  Diffusion-weighted magnetic resonance imaging in acute stroke. , 1998, Stroke.

[65]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[66]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[67]  Yoram Cohen,et al.  From single‐pulsed field gradient to double‐pulsed field gradient MR: gleaning new microstructural information and developing new forms of contrast in MRI , 2010, NMR in biomedicine.

[68]  Koichi Oshio,et al.  Interpretation of diffusion MR imaging data using a gamma distribution model. , 2014, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[69]  Janez Stepišnik,et al.  Time-dependent self-diffusion by NMR spin-echo , 1993 .

[70]  R. Andrew Byrd,et al.  ASSOCIATION OF BIOMOLECULAR SYSTEMS VIA PULSED FIELD GRADIENT NMR SELF-DIFFUSION MEASUREMENTS , 1995 .

[71]  Rachid Deriche,et al.  A survey of current trends in diffusion MRI for structural brain connectivity , 2016, Journal of neural engineering.

[72]  Denis S. Grebenkov,et al.  NMR survey of reflected brownian motion , 2007 .

[73]  P. Ellen Grant,et al.  Multi-shell diffusion signal recovery from sparse measurements , 2014, Medical Image Anal..

[74]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[75]  Bengt Jönsson,et al.  Predictions of pulsed field gradient NMR echo-decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method. , 2003, Journal of magnetic resonance.

[76]  Rachid Deriche,et al.  Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI , 2013, Medical Image Anal..

[77]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .