Timing the r-process Enrichment of the Ultra-faint Dwarf Galaxy Reticulum II

The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with 72−12+10 % of its stars strongly enhanced in r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ∼80% of the stars in the galaxy, while the remainder of the stars formed ∼3 Gyr later. When the bursts are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more, such as GW170817.

[1]  B. Metzger,et al.  Signatures of r-process Enrichment in Supernovae from Collapsars , 2022, The Astrophysical Journal Letters.

[2]  R. Klein,et al.  Magnetic fields in the formation of the first stars.--II Results , 2022, 2201.02225.

[3]  D. Weisz,et al.  RR Lyrae-based Distances for 39 Nearby Dwarf Galaxies Calibrated to Gaia eDR3 , 2021, The Astrophysical Journal.

[4]  R. Klessen,et al.  Effect of the cosmological transition to metal-enriched star-formation on the hydrogen 21-cm signal , 2021, Monthly Notices of the Royal Astronomical Society.

[5]  S. Ho,et al.  The High Latitude Spectroscopic Survey on the Nancy Grace Roman Space Telescope , 2021, The Astrophysical Journal.

[6]  J. Simon,et al.  A Statistical Detection of Wide Binary Systems in the Ultrafaint Dwarf Galaxy Reticulum II , 2021, The Astrophysical Journal.

[7]  M. Hilker,et al.  Stellar mass segregation as separating classifier between globular clusters and ultra-faint dwarf galaxies , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  R. Schonrich,et al.  Metallicity-Suppressed Collapsars Cannot be the Dominant r-Process Source in the Milky Way , 2021, 2111.11464.

[9]  J. Simon,et al.  The Most Metal-poor Stars in the Magellanic Clouds Are r-process Enhanced , 2021, The Astronomical Journal.

[10]  S. Majewski,et al.  Star Formation Histories of Ultra-faint Dwarf Galaxies: Environmental Differences between Magellanic and Non-Magellanic Satellites? , 2021, The Astrophysical Journal Letters.

[11]  V. Bromm,et al.  Highly r-process enhanced stars in ultra-faint dwarf galaxies , 2021, 2106.13383.

[12]  Tenerife,et al.  Gaia early DR3 systemic motions of Local Group dwarf galaxies and orbital properties with a massive Large Magellanic Cloud , 2021, Astronomy & Astrophysics.

[13]  M. Drout,et al.  Collapsar R-process Yields Can Reproduce [Eu/Fe] Abundance Scatter in Metal-poor Stars , 2020, The Astrophysical Journal.

[14]  J. Sollerman,et al.  Type Ic supernovae from the (intermediate) Palomar Transient Factory , 2018, Astronomy & Astrophysics.

[15]  K. Bechtol,et al.  Eridanus II: A Fossil from Reionization with an Off-center Star Cluster , 2020, 2012.00043.

[16]  T. Beers,et al.  Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754 , 2020, The Astrophysical Journal.

[17]  G. Clementini,et al.  A fresh look at the RR Lyrae population in the Draco dwarf spheroidal galaxy with Gaia , 2020, 2009.12191.

[18]  T. Quinn,et al.  Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations , 2020, 2008.11207.

[19]  B. Willman,et al.  The Elusive Distance Gradient in the Ultrafaint Dwarf Galaxy Hercules: A Combined Hubble Space Telescope and Gaia View , 2020, The Astrophysical Journal.

[20]  N. Yoshida,et al.  R-process enrichment in ultrafaint dwarf galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[21]  S. Salvadori,et al.  Evidence for ≳4 Gyr timescales of neutron star mergers from Galactic archaeology , 2020, Astronomy & Astrophysics.

[22]  M. Boylan-Kolchin,et al.  The Orbital Histories of Magellanic Satellites Using Gaia DR2 Proper Motions , 2020, The Astrophysical Journal.

[23]  A. Walker,et al.  Gaia RR Lyrae Stars in Nearby Ultra-faint Dwarf Satellite Galaxies , 2020, The Astrophysical Journal Supplement Series.

[24]  C. Pankow,et al.  LISA and the Existence of a Fast-merging Double Neutron Star Formation Channel , 2019, The Astrophysical Journal.

[25]  V. Springel,et al.  Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies , 2019, 1907.01557.

[26]  J. Frieman,et al.  Search for RR Lyrae stars in DES ultrafaint systems: Grus I, Kim 2, Phoenix II, and Grus II , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  J. Read,et al.  EDGE: The Origin of Scatter in Ultra-faint Dwarf Stellar Masses and Surface Brightnesses , 2019, The Astrophysical Journal.

[28]  B. Willman,et al.  Signatures of Tidal Disruption in Ultra-faint Dwarf Galaxies: A Combined HST, Gaia, and MMT/Hectochelle Study of Leo V , 2019, The Astrophysical Journal.

[29]  I. Bartos,et al.  Early Solar System r-process Abundances Limit Collapsar Origin , 2019, The Astrophysical Journal.

[30]  M. Drout,et al.  The Lanthanide Fraction Distribution in Metal-poor Stars: A Test of Neutron Star Mergers as the Dominant r-process Site , 2019, The Astrophysical Journal.

[31]  E. Berger,et al.  Measuring the Delay Time Distribution of Binary Neutron Stars. I. Through Scaling Relations of the Host Galaxies of Gravitational-wave Events , 2019, The Astrophysical Journal.

[32]  T. Piran,et al.  The Gravitational waves merger time distribution of binary neutron star systems , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  F. Matteucci,et al.  A new delay time distribution for merging neutron stars tested against Galactic and cosmic data , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  P. Hopkins,et al.  Be it therefore resolved: cosmological simulations of dwarf galaxies with 30 solar mass resolution , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  D. Gerdes,et al.  Chemical Abundance Analysis of Tucana III, the Second r-process Enhanced Ultra-faint Dwarf Galaxy , 2018, The Astrophysical Journal.

[36]  H. Rix,et al.  Precision Distances to Dwarf Galaxies and Globular Clusters from Pan-STARRS1 3π RR Lyrae , 2018, The Astrophysical Journal.

[37]  E. Ramirez-Ruiz,et al.  r-process Enrichment of the Ultra-faint Dwarf Galaxies by Fast-merging Double-neutron Stars , 2018, The Astrophysical Journal.

[38]  D. Siegel,et al.  Collapsars as a major source of r-process elements , 2018, Nature.

[39]  R. Klessen,et al.  Fingerprint of the first stars: multi-enriched extremely metal-poor stars in the TOPoS survey , 2018, Monthly Notices of the Royal Astronomical Society.

[40]  G. Chiaki,et al.  Seeding the second star: enrichment from population III, dust evolution, and cloud collapse , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  A. Frebel From Nuclei to the Cosmos: Tracing Heavy-Element Production with the Oldest Stars , 2018, Annual Review of Nuclear and Particle Science.

[42]  M. Boylan-Kolchin,et al.  The suppression of star formation on the smallest scales: what role does environment play? , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  S. Djorgovski,et al.  A MegaCam Survey of Outer Halo Satellites. III. Photometric and Structural Parameters , 2018, The Astrophysical Journal.

[44]  B. Willman,et al.  A Deeper Look at the New Milky Way Satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III , 2018, The Astrophysical Journal.

[45]  G. Halevi,et al.  r-Process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments , 2018, 1801.08943.

[46]  P. Hopkins,et al.  No assembly required: mergers are mostly irrelevant for the growth of low-mass dwarf galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[47]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[48]  A. Ji,et al.  Tracing the first stars and galaxies of the Milky Way , 2016, 1611.00759.

[49]  Santi Cassisi,et al.  The ISLAnds Project. III. Variable Stars in Six Andromeda Dwarf Spheroidal Galaxies , 2017, 1710.09038.

[50]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[51]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[52]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[53]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[54]  J. Prochaska,et al.  The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source , 2017, 1710.05439.

[55]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[56]  J. Frieman,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale , 2017, 1710.05458.

[57]  D. Gerdes,et al.  An r-process Enhanced Star in the Dwarf Galaxy Tucana III , 2017, 1702.07430.

[58]  V. Bromm,et al.  Connecting the First Galaxies with Ultrafaint Dwarfs in the Local Group: Chemical Signatures of Population III Stars , 2017, 1702.07355.

[59]  J. Frieman,et al.  Nearest Neighbor: The Low-mass Milky Way Satellite Tucana III , 2016, 1610.05301.

[60]  V. Bromm,et al.  Building up the Population III initial mass function from cosmological initial conditions , 2016, 1603.09475.

[61]  D. Vanbeveren,et al.  The delay time distribution of massive double compact star mergers , 2016, 1601.06966.

[62]  D. Nidever,et al.  DETAILED CHEMICAL ABUNDANCES IN THE r-PROCESS-RICH ULTRA-FAINT DWARF GALAXY RETICULUM 2 , 2016, 1601.04070.

[63]  J. Simon,et al.  R-process enrichment from a single event in an ancient dwarf galaxy , 2015, Nature.

[64]  Irvine,et al.  Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites , 2015, 1504.02466.

[65]  P. Hopkins,et al.  Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies , 2015, 1502.02036.

[66]  M. Ishigaki,et al.  Chemical compositions of six metal-poor stars in the ultra-faint dwarf spheroidal galaxy Boötes I , 2014, 1401.1265.

[67]  P. Kroupa,et al.  The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies , 2013, 1309.6634.

[68]  F. Thielemann,et al.  Neutrino-driven wind simulations and nucleosynthesis of heavy elements , 2012, 1207.2527.

[69]  M. Hashimoto,et al.  Nucleosynthesis in Magnetically Driven Jets from Collapsars , 2008, 0804.0969.

[70]  A. Sarajedini,et al.  BVI Photometry and the Luminosity Functions of the Globular Cluster M92 , 2007, astro-ph/0703167.

[71]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[72]  W. Hix,et al.  Nucleosynthesis in the Outflow from Gamma-Ray Burst Accretion Disks , 2005, astro-ph/0509365.

[73]  M. Dolci,et al.  Near-Infrared Observations of RR Lyrae Variables in Galactic Globular Clusters. I. The Case of M92 , 2005, astro-ph/0503140.

[74]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[75]  A. Cameron Some Nucleosynthesis Effects Associated with r-Process Jets , 2003 .

[76]  Mark Clampin,et al.  Overview of the Advanced Camera for Surveys on-orbit performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[77]  A. Dolphin Numerical methods of star formation history measurement and applications to seven dwarf spheroidals , 2001, astro-ph/0112331.

[78]  F. Nakamura,et al.  On the Initial Mass Function of Population III Stars , 2000, astro-ph/0010464.

[79]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[80]  V. Bromm,et al.  Forming the First Stars in the Universe: The Fragmentation of Primordial Gas , 1999, The Astrophysical journal.

[81]  A. MacFadyen,et al.  Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae” , 1998, astro-ph/9810274.

[82]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[83]  B. Meyer Decompression of Initially Cold Neutron Star Matter: A Mechanism for the r-Process? , 1989 .

[84]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[85]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[86]  E. Salpeter The Luminosity function and stellar evolution , 1955 .