Evolution-based design of neural fuzzy networks using self-adapting genetic parameters

In this paper, an evolution-based approach to design of neural fuzzy networks is presented. The proposed strategy optimizes the whole fuzzy system with minimum rule number according to given specifications, while training the network parameters. The approach relies on an optimization tool, which combines evolution strategies and simulated annealing algorithms in finding the global optimum solution. The optimization variables include membership function parameters and rule numbers which are combined with genetic parameters to create diversity in the search space due to self-adaptation. The optimization technique is independent of the topology under consideration and capable of handling any type of membership function. The algorithmic details of the optimization methodology are discussed in detail, and the generality of the approach is illustrated by different examples.

[1]  Abdollah Homaifar,et al.  Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms , 1995, IEEE Trans. Fuzzy Syst..

[2]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[3]  Rob A. Rutenbar,et al.  Synthesis of high-performance analog circuits in ASTRX/OBLX , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Thomas Bäck,et al.  Extended Selection Mechanisms in Genetic Algorithms , 1991, ICGA.

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[7]  Ethem Alpaydin,et al.  Cascading classifiers , 1998, Kybernetika.

[8]  Chin-Teng Lin,et al.  Neural-Network-Based Fuzzy Logic Control and Decision System , 1991, IEEE Trans. Computers.

[9]  Hassan Elwan,et al.  A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI , 1996 .

[10]  Georges Gielen,et al.  Analog Circuit Design Optimization based on Symbolic Simulation and Simulated Annealing , 1989 .

[11]  W. E. Thompson,et al.  Design of intelligent fuzzy logic controllers using genetic algorithms , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[12]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[13]  Chin-Teng Lin,et al.  An online self-constructing neural fuzzy inference network and its applications , 1998, IEEE Trans. Fuzzy Syst..

[14]  Russell C. Eberhart,et al.  Implementation of evolutionary fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[15]  Chuen-Tsai Sun,et al.  Rule-base structure identification in an adaptive-network-based fuzzy inference system , 1994, IEEE Trans. Fuzzy Syst..

[16]  Keon-Myung Lee,et al.  Fuzzy Inference Neural Network for Fuzzy Model Tuning , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[17]  Chin-Teng Lin,et al.  An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications , 1998 .

[18]  G. C. Mouzouris,et al.  Designing fuzzy logic systems , 1997 .

[19]  Keon-Myung Lee,et al.  Fuzzy inference neural network for fuzzy model tuning , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[20]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[21]  Marco Russo,et al.  FuGeNeSys-a fuzzy genetic neural system for fuzzy modeling , 1998, IEEE Trans. Fuzzy Syst..

[22]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[23]  Leopoldo García Franquelo,et al.  Circuit performance modeling by means of fuzzy logic , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..