Dynamics of quantum correlation and coherence in de Sitter universe

In this article, we investigate the dynamics of quantum correlation and coherence for two atoms interacting with massless scalar field in the background de Sitter spacetime. We firstly analyze the solving process of master equation that describes the system evolution with initial Werner state. Then, we discuss the degradation, generation, revival and enhancement of quantum correlation and coherence for three cases of different initial states: zero correlation state, nonzero correlation separable state and maximally entangled state.

[1]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[2]  Zhiming Huang,et al.  Geometry and dynamics of one-norm geometric quantum discord , 2016, Quantum Inf. Process..

[3]  Haozhen Situ,et al.  Dynamics of relative entropy of coherence under Markovian channels , 2016, Quantum Inf. Process..

[4]  A. Dragan,et al.  Detecting the Curvature of de Sitter Universe with Two Entangled Atoms , 2016, Scientific Reports.

[5]  David Jennings,et al.  Description of quantum coherence in thermodynamic processes requires constraints beyond free energy , 2014, Nature Communications.

[6]  Maciej Lewenstein,et al.  Trace distance measure of coherence , 2015, ArXiv.

[7]  F. M. Paula,et al.  Geometric quantum discord through the Schatten 1-norm , 2013, 1302.7034.

[8]  Gerardo Adesso,et al.  Measuring Quantum Coherence with Entanglement. , 2015, Physical review letters.

[9]  Franco Nori,et al.  Witnessing Quantum Coherence: from solid-state to biological systems , 2012, Scientific Reports.

[10]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[11]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[12]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[13]  Davide Girolami,et al.  Quantum Discord Determines the Interferometric Power of Quantum States , 2013, 1309.1472.

[14]  G. Gour,et al.  Low-temperature thermodynamics with quantum coherence , 2014, Nature Communications.

[15]  Allen,et al.  Vacuum states in de Sitter space. , 1985, Physical review. D, Particles and fields.

[16]  Heng Fan,et al.  Coherence extraction from measurement-induced disturbance , 2015 .

[17]  Eric Chitambar,et al.  Relating the Resource Theories of Entanglement and Quantum Coherence. , 2015, Physical review letters.

[18]  U. Sen,et al.  Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures , 2015, 1512.01477.

[19]  On the Hawking effect in de Sitter space , 1989 .

[20]  Gerardo Adesso,et al.  Negativity of quantumness and its interpretations , 2012, 1211.4022.

[21]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[22]  Zhiming Huang,et al.  Geometric quantum discord under noisy environment , 2016, Quantum Inf. Process..

[23]  Xiaobao Liu,et al.  Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field , 2015, 1509.06832.

[24]  S. Luo,et al.  Geometric measure of quantum discord , 2010 .

[25]  Hongwei Yu,et al.  Entanglement dynamics for uniformly accelerated two-level atoms , 2015, 1501.03321.

[26]  Wei Chen,et al.  Bell violation versus geometric measure of quantum discord and their dynamical behavior , 2012, 1303.4830.

[27]  Zhiming Huang,et al.  Optimal Protection of Quantum Coherence in Noisy Environment , 2017 .

[28]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[29]  B. Lanyon,et al.  Experimental quantum computing without entanglement. , 2008, Physical review letters.

[30]  Liu Ye,et al.  Quantum correlation versus Bell-inequality violation under the amplitude damping channel , 2015 .

[31]  Zehua Tian,et al.  Dynamics and quantum entanglement of two-level atoms in de Sitter spacetime , 2014, 1407.4930.

[32]  Jonas Maziero,et al.  THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES , 2011, 1107.3428.

[33]  Bo Liu,et al.  Cosmic Bell Test: Measurement Settings from Milky Way Stars. , 2016, Physical review letters.

[34]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[35]  Davide Girolami,et al.  Characterizing nonclassical correlations via local quantum uncertainty. , 2012, Physical review letters.

[36]  J. Åberg Catalytic coherence. , 2013, Physical Review Letters.

[37]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[38]  Heng Fan,et al.  Quantum coherence and correlations in quantum system , 2015, Scientific reports.

[39]  N. J. Cerf,et al.  Multipartite nonlocality without entanglement in many dimensions , 2006 .

[40]  V. Giovannetti,et al.  Toward computability of trace distance discord , 2013, 1304.6879.

[41]  Scully,et al.  Enhancement of the index of refraction via quantum coherence. , 1991, Physical review letters.

[42]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[43]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[44]  Xing Xiao,et al.  Quantum coherence in multipartite systems , 2015, 1506.01773.

[45]  M. N. Bera,et al.  Role of quantum correlation in metrology beyond standard quantum limit , 2014, 1405.5357.

[46]  Yannick Ole Lipp,et al.  Quantum discord as resource for remote state preparation , 2012, Nature Physics.

[47]  Gerardo Adesso,et al.  Characterizing non-Markovianity via quantum interferometric power , 2015, 1501.02335.

[48]  T. Ralph,et al.  Observing the operational significance of discord consumption , 2012, Nature Physics.

[49]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[50]  Hongwei Yu,et al.  Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations , 2016, 1609.06820.

[51]  Aharon Brodutch,et al.  Criteria for measures of quantum correlations , 2012, Quantum Inf. Comput..

[52]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[53]  Zhiming Huang,et al.  Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field , 2017 .

[54]  Stefano Pirandola,et al.  Quantum discord as a resource for quantum cryptography , 2013, Scientific Reports.

[55]  Davide Girolami,et al.  Converting Coherence to Quantum Correlations. , 2015, Physical review letters.