Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations

AbstractThe launch of the NASA CloudSat in April 2006 enabled the first satellite-based global observation of vertically resolved cloud information. However, CloudSat’s nonscanning W-band (94 GHz) Cloud Profiling Radar (CPR) provides only a nadir cross section, or “curtain,” of the atmosphere along the satellite ground track, precluding a full three-dimensional (3D) characterization and thus limiting its utility for certain model verification and cloud-process studies. This paper details an algorithm for extending a limited set of vertically resolved cloud observations to form regional 3D cloud structure. Predicated on the assumption that clouds of the same type (e.g., cirrus, cumulus, and stratocumulus) often share geometric and microphysical properties as well, the algorithm identifies cloud-type-dependent correlations and uses them to estimate cloud-base height and liquid/ice water content vertical structure. These estimates, when combined with conventional retrievals of cloud-top height, result in a 3...

[1]  Donald L. Reinke,et al.  Cloud-Base Height Estimates Using a Combination of Meteorological Satellite Imagery and Surface Reports , 2000 .

[2]  Moustafa T. Chahine,et al.  Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount , 2007 .

[3]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  John M. Haynes,et al.  A combined lidar and radar retrieval of cloud optical properties , 2005, SPIE Asia-Pacific Remote Sensing.

[5]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[6]  Graeme L. Stephens,et al.  Retrieval of ice cloud microphysical parameters using the CloudSat millimeter‐wave radar and temperature , 2009 .

[7]  P. Webster,et al.  Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical Sea Surface Temperatures , 2004 .

[8]  Judith A. Curry,et al.  Classification of clouds over the western equatorial Pacific Ocean using combined infrared and microwave satellite data , 1995 .

[9]  Frederick H. Carr,et al.  A Prognostic Cloud Scheme for Operational NWP Models , 1997 .

[10]  Tobias Wehr,et al.  A 3D cloud‐construction algorithm for the EarthCARE satellite mission , 2011 .

[11]  Steven D. Miller,et al.  Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics , 2009 .

[12]  M. Tiedtke,et al.  Representation of Clouds in Large-Scale Models , 1993 .

[13]  V. Ramanathan,et al.  Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño , 1991, Nature.

[14]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[15]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[16]  Bryan A. Baum,et al.  Satellite Remote Sensing of Multiple Cloud Layers , 1995 .

[17]  The useful pursuit of shadows , 2003 .

[18]  G. Vaughan,et al.  Using passive remote sensing to retrieve the vertical variation of cloud droplet size in marine stratocumulus: An assessment of information content and the potential for improved retrievals from hyperspectral measurements , 2012 .

[19]  David A. Randall,et al.  Cloud Parameterization for Climate Modeling: Status and Prospects , 1989 .

[20]  Stanley Q. Kidder,et al.  Satellite Meteorology: An Introduction , 1995 .

[21]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[22]  G. Stephens,et al.  Evaluating CloudSat ice water content retrievals using a cloud‐resolving model: Sensitivities to frozen particle properties , 2008 .

[23]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[24]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[25]  Jacques Pelon,et al.  An overview of the ACE2 CLOUDYCOLUMN closure experiment , 2000 .

[26]  Michael J. Pavolonis,et al.  Daytime Cloud Overlap Detection from AVHRR and VIIRS , 2004 .

[27]  Toby N. Carlson,et al.  Vertical and areal distribution of Saharan dust over the western equatorial north Atlantic Ocean , 1972 .

[28]  P. C. Pandey,et al.  Inference of cloud temperature and thickness by microwave radiometry from space , 1983 .

[29]  J. Wallace Effect of deep convection on the regulation of tropical sea surface temperature , 1992, Nature.

[30]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[31]  Gerald G. Mace,et al.  Remote sensing of cirrus cloud vertical size profile using MODIS data , 2009 .

[32]  C. Velden,et al.  ARTICLES: The Impact of the Saharan Air Layer on Atlantic Tropical Cyclone Activity. , 2004 .

[33]  Jonathan H. Jiang,et al.  Touring the atmosphere aboard the A-Train , 2010 .

[34]  Keith D. Hutchison,et al.  Cloud base heights retrieved during night‐time conditions with MODIS data , 2006 .

[35]  Graeme L. Stephens,et al.  GOES 10 cloud optical property retrievals in the context of vertically varying microphysics , 2001 .

[36]  Meteorological Education and Training Using A-Train Profilers , 2012 .

[37]  Taneil Uttal,et al.  Daytime Global Cloud Typing from AVHRR and VIIRS: Algorithm Description, Validation, and Comparisons , 2005 .

[38]  Thomas Trautmann,et al.  Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm , 2006 .

[39]  Larry L. Stowe,et al.  Scientific basis and initial evaluation of the CLAVR-1 global clear cloud classification algorithm f , 1999 .

[40]  Sarah F. Kew,et al.  A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds , 2005 .

[41]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[42]  G. L. Stephens,et al.  Multiple scattering effects in the lidar pulse stretching problem , 1999 .

[43]  J. Holton An introduction to dynamic meteorology , 2004 .