A Review of Software-Defined WLANs: Architectures and Central Control Mechanisms

The significant growth in the number of WiFi-enabled devices as well as the increase in the traffic conveyed through wireless local area networks (WLANs) necessitate the adoption of new network control mechanisms. Specifically, dense deployment of access points, client mobility, and emerging QoS demands bring about challenges that cannot be effectively addressed by distributed mechanisms. Recent studies show that software-defined WLANs (SDWLANs) simplify network control, improve QoS provisioning, and lower the deployment cost of new network control mechanisms. In this paper, we present an overview of SDWLAN architectures and provide a qualitative comparison in terms of features such as programmability and virtualization. In addition, we classify and investigate the two important classes of centralized network control mechanisms: 1) association control and 2) channel assignment. We study the basic ideas employed by these mechanisms, and in particular, we focus on the metrics utilized and the problem formulation techniques proposed. We present a comparison of these mechanisms and identify open research problems.

[1]  Parth H. Pathak,et al.  A first look at 802.11ac in action: Energy efficiency and interference characterization , 2014, 2014 IFIP Networking Conference.

[2]  Yong Xiang,et al.  Software-Defined Wireless Networking Opportunities and Challenges for Internet-of-Things: A Review , 2016, IEEE Internet of Things Journal.

[3]  Yuanyuan Yang,et al.  On-Line AP Association Algorithms for 802.11n WLANs with Heterogeneous Clients , 2014, IEEE Transactions on Computers.

[4]  Martín Casado,et al.  NOX: towards an operating system for networks , 2008, CCRV.

[5]  Boris Bellalta,et al.  Next generation IEEE 802.11 Wireless Local Area Networks: Current status, future directions and open challenges , 2016, Comput. Commun..

[6]  Behnam Dezfouli,et al.  REWIMO , 2017, ACM Trans. Sens. Networks.

[7]  Jiannong Cao,et al.  United Channel Assignments in Residential Environments , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[8]  Saewoong Bahk,et al.  A Channel Allocation Algorithm for Reducing the Channel Sensing/Reserving Asymmetry in 802.11ac Networks , 2015, IEEE Transactions on Mobile Computing.

[9]  Paulo Pedreiras,et al.  Online QoS Management for Multimedia Real-Time Transmission in Industrial Networks , 2011, IEEE Transactions on Industrial Electronics.

[10]  Bert Wijnen,et al.  An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks , 2002, RFC.

[11]  Yuanyuan Yang,et al.  AP association in 802.11n WLANs with heterogeneous clients , 2012, 2012 Proceedings IEEE INFOCOM.

[12]  Anja Feldmann,et al.  OpenSDWN: programmatic control over home and enterprise WiFi , 2015, SOSR.

[13]  Lotfi Kamoun,et al.  PHY/MAC Enhancements and QoS Mechanisms for Very High Throughput WLANs: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[14]  Martin Heusse,et al.  Performance anomaly of 802.11b , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[15]  Michael D. Logothetis,et al.  A study on dynamic load balance for IEEE 802.11b wireless LAN , 2002 .

[16]  Dipankar Raychaudhuri,et al.  SplitAP: Leveraging Wireless Network Virtualization for Flexible Sharing of WLANs , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[17]  Wenchao Xu,et al.  Channel Assignment and User Association Game in Dense 802.11 Wireless Networks , 2011, 2011 IEEE International Conference on Communications (ICC).

[18]  F. Richard Yu,et al.  Wireless Network Virtualization: A Survey, Some Research Issues and Challenges , 2015, IEEE Communications Surveys & Tutorials.

[19]  Andrea Zanella,et al.  On the Use of IEEE 802.11n for Industrial Communications , 2016, IEEE Transactions on Industrial Informatics.

[20]  Wu Chou,et al.  REST API Design Patterns for SDN Northbound API , 2014, 2014 28th International Conference on Advanced Information Networking and Applications Workshops.

[21]  I. Baldine,et al.  Network Virtualization: Technologies, Perspectives, and Frontiers , 2013, Journal of Lightwave Technology.

[22]  Haitao Wu,et al.  Sora: High Performance Software Radio Using General Purpose Multi-core Processors , 2009, NSDI.

[23]  Jie Wu,et al.  SmartAssoc: Decentralized Access Point Selection Algorithm to Improve Throughput , 2013, IEEE Transactions on Parallel and Distributed Systems.

[24]  Cheng-Zhong Xu,et al.  A framework for network management using mobile agents , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.

[25]  Cunqing Hua,et al.  Channel Selection and User Association in WiFi Networks , 2016 .

[26]  David Walker,et al.  Frenetic: a network programming language , 2011, ICFP.

[27]  Bryan Ng,et al.  Developing a traffic classification platform for enterprise networks with SDN: Experiences & lessons learned , 2015, 2015 IFIP Networking Conference (IFIP Networking).

[28]  Anja Feldmann,et al.  Programmatic Orchestration of WiFi Networks , 2014, USENIX Annual Technical Conference.

[29]  Hyuk Lim,et al.  Scalable Traffic Sampling Using Centrality Measure on Software-Defined Networks , 2017, IEEE Communications Magazine.

[30]  Seung-Jae Han,et al.  Cell Breathing Techniques for Load Balancing in Wireless LANs , 2006, IEEE Transactions on Mobile Computing.

[31]  Bhabani P. Sinha,et al.  Wireless Networks and Mobile Computing , 2015 .

[32]  Matias Richart,et al.  Resource Slicing in Virtual Wireless Networks: A Survey , 2016, IEEE Transactions on Network and Service Management.

[33]  Pat R. Calhoun,et al.  Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Specification , 2009, RFC.

[34]  George Varghese,et al.  Design principles for packet parsers , 2013, Architectures for Networking and Communications Systems.

[35]  Mehmet Fatih Tüysüz,et al.  Smart channel scanning with minimized communication interruptions over IEEE 802.11 WLANs , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[36]  Jan Medved,et al.  OpenDaylight: Towards a Model-Driven SDN Controller architecture , 2014, Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014.

[37]  Stefan Schmid,et al.  AeroFlux: A Near-Sighted Controller Architecture for Software-Defined Wireless Networks , 2014, ONS.

[38]  Hiroshi Shigeno,et al.  A Framework of AP Aggregation Using Virtualization for High Density WLANs , 2011, 2011 Third International Conference on Intelligent Networking and Collaborative Systems.

[39]  Samir Ranjan Das,et al.  Deconstructing Interference Relations in WiFi Networks , 2010, 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON).

[40]  Christian Timmerer,et al.  Challenges of QoE management for cloud applications , 2012, IEEE Communications Magazine.

[41]  Yunong Han,et al.  An adaptive mobility manager for Software-Defined Enterprise WLANs , 2016, 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN).

[42]  Manu Bansal,et al.  Atomix: A Framework for Deploying Signal Processing Applications on Wireless Infrastructure , 2015, NSDI.

[43]  Behnam Dezfouli,et al.  Mobility-aware real-time scheduling for low-power wireless networks , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[44]  Yan Gao,et al.  SOFA: A Sleep-Optimal Fair-Attention Scheduler for the Power-Saving Mode of WLANs , 2011, 2011 31st International Conference on Distributed Computing Systems.

[45]  Danda B. Rawat,et al.  Software Defined Networking Architecture, Security and Energy Efficiency: A Survey , 2017, IEEE Communications Surveys & Tutorials.

[46]  Srikanth V. Krishnamurthy,et al.  Denial of Service Attacks in Wireless Networks: The Case of Jammers , 2011, IEEE Communications Surveys & Tutorials.

[47]  Haiyun Luo,et al.  DIRAC: a software-based wireless router system , 2003, MobiCom '03.

[48]  Anja Feldmann,et al.  Towards programmable enterprise WLANS with Odin , 2012, HotSDN '12.

[49]  Xuemin Shen,et al.  QoS-Driven Efficient Client Association in High-Density Software-Defined WLAN , 2017, IEEE Transactions on Vehicular Technology.

[50]  Sachin Katti,et al.  SoftRAN: software defined radio access network , 2013, HotSDN '13.

[51]  Srikanth V. Krishnamurthy,et al.  A Measurement-Driven Anti-Jamming System for 802.11 Networks , 2011, IEEE/ACM Transactions on Networking.

[52]  Srikanth V. Krishnamurthy,et al.  On the Efficacy of Frequency Hopping in Coping with Jamming Attacks in 802.11 Networks , 2010, IEEE Transactions on Wireless Communications.

[53]  Konstantina Papagiannaki,et al.  Interference Mitigation Through Power Control in High Density 802.11 WLANs , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[54]  Hwee Pink Tan,et al.  Modeling low-power wireless communications , 2015, J. Netw. Comput. Appl..

[55]  David Walker,et al.  A compiler and run-time system for network programming languages , 2012, POPL '12.

[56]  Xiang Ling,et al.  Joint access point placement and channel assignment for 802.11 wireless LANs , 2006, IEEE Transactions on Wireless Communications.

[57]  Simon Oechsner,et al.  Modeling and performance evaluation of an OpenFlow architecture , 2011, 2011 23rd International Teletraffic Congress (ITC).

[58]  Stefan Schmid,et al.  Towards a scalable and near-sighted control plane architecture for WiFi SDNs , 2014, HotSDN.

[59]  Sam Ruby,et al.  RESTful Web Services , 2007 .

[60]  Jing Zhao,et al.  Analysis of H.264 Bitstream Prioritization for Dual TCP/UDP Streaming of HD video over WLANs , 2015, 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC).

[61]  Bor-Jiunn Hwang,et al.  A Power-Saving and Robust Point Coordination Function for the Transmission of VoIP over 802.11 , 2010, International Symposium on Parallel and Distributed Processing with Applications.

[62]  Katherine Guo,et al.  ViFi: virtualizing WLAN using commodity hardware , 2014, MobiArch '14.

[63]  M. Klepal,et al.  Wireless LAN Network Design: Site Survey or Propagation Modeling? , 2003 .

[64]  Sunghyun Choi,et al.  Fast scanning schemes for IEEE 802.11 WLANs in virtual AP environments , 2011, Comput. Networks.

[65]  Dorgival O. Guedes,et al.  Programmable Networks—From Software-Defined Radio to Software-Defined Networking , 2015, IEEE Communications Surveys & Tutorials.

[66]  Qi Shi,et al.  SDN-based channel assignment algorithm for interference management in dense Wi-Fi networks , 2016, 2016 European Conference on Networks and Communications (EuCNC).

[67]  Dipankar Raychaudhuri,et al.  Understanding channel selection dynamics in dense Wi-Fi networks , 2015, IEEE Communications Magazine.

[68]  Zhibo Pang,et al.  Ultra High Performance Wireless Control for Critical Applications: Challenges and Directions , 2017, IEEE Transactions on Industrial Informatics.

[69]  Steven D. Blostein,et al.  AP Association Optimization and CCA Threshold Adjustment in Dense WLANs , 2015, 2015 IEEE Globecom Workshops (GC Wkshps).

[70]  Gregory Smith,et al.  Wireless virtualization on commodity 802.11 hardware , 2007, WinTECH '07.

[71]  Li-Hsing Yen,et al.  Load Balancing in IEEE 802.11 Networks , 2009, IEEE Internet Comput..

[72]  Srikanth V. Krishnamurthy,et al.  ARES: an anti-jamming reinforcement system for 802.11 networks , 2009, CoNEXT '09.

[73]  Sachin Katti,et al.  SpotFi: Decimeter Level Localization Using WiFi , 2015, SIGCOMM.

[74]  Adam Wolisz,et al.  BIGAP — Seamless handover in high performance enterprise IEEE 802.11 networks , 2016, NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium.

[75]  Nael B. Abu-Ghazaleh,et al.  Wireless Software Defined Networking: A Survey and Taxonomy , 2016, IEEE Communications Surveys & Tutorials.

[76]  Yu Cheng,et al.  Energy-Efficient Sleep Scheduling for Delay-Constrained Applications Over WLANs , 2014, IEEE Transactions on Vehicular Technology.

[77]  Adam Wolisz,et al.  ResFi: A secure framework for self organized Radio Resource Management in residential WiFi networks , 2016, 2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM).

[78]  Alec Wolman,et al.  An Architecture for Extensible Wireless LANs , 2008, HotNets.

[79]  Kang G. Shin,et al.  QoS provisioning for large-scale multi-ap WLANs , 2012, Ad Hoc Networks.

[80]  Jens Zander,et al.  Association and Deployment Considerations in Dense Wireless LANs , 2014, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring).

[81]  Serbulent Tozlu,et al.  Wi-Fi enabled sensors for internet of things: A practical approach , 2012, IEEE Communications Magazine.

[82]  William A. Arbaugh,et al.  Weighted coloring based channel assignment for WLANs , 2005, MOCO.

[83]  Yanghee Choi,et al.  Fast-handoff support in IEEE 802.11 wireless networks , 2007, IEEE Communications Surveys & Tutorials.

[84]  Kang G. Shin,et al.  Adaptive Subcarrier Nulling: Enabling partial spectrum sharing in wireless LANs , 2011, 2011 19th IEEE International Conference on Network Protocols.

[85]  Byrav Ramamurthy,et al.  Network Innovation using OpenFlow: A Survey , 2014, IEEE Communications Surveys & Tutorials.

[86]  Weihua Zhuang,et al.  A Survey on High Efficiency Wireless Local Area Networks: Next Generation WiFi , 2016, IEEE Communications Surveys & Tutorials.

[87]  Yozo Shoji,et al.  WiFi Network Virtualization to Control the Connectivity of a Target Service , 2015, IEEE Transactions on Network and Service Management.

[88]  Ian F. Akyildiz,et al.  A roadmap for traffic engineering in SDN-OpenFlow networks , 2014, Comput. Networks.

[89]  Hui Deng,et al.  IEEE 802.11 Medium Access Control (MAC) Profile for Control and Provisioning of Wireless Access Points (CAPWAP) , 2015, RFC.

[90]  Jennifer Rexford,et al.  Toward Software-Defined Cellular Networks , 2012, 2012 European Workshop on Software Defined Networking.

[91]  Pablo San Segundo,et al.  A new DSATUR-based algorithm for exact vertex coloring , 2012, Comput. Oper. Res..

[92]  Shiao-Li Tsao,et al.  A survey of energy efficient MAC protocols for IEEE 802.11 WLAN , 2011, Comput. Commun..

[93]  Yashar Ganjali,et al.  On scalability of software-defined networking , 2013, IEEE Communications Magazine.

[94]  Dan Pei,et al.  Characterizing and Improving WiFi Latency in Large-Scale Operational Networks , 2016, MobiSys.

[95]  Aravind Srinivasan,et al.  A Client-Driven Approach for Channel Management in Wireless LANs , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[96]  Edmund Wong,et al.  Large-scale Measurements of Wireless Network Behavior , 2015, SIGCOMM.

[97]  William Stallings,et al.  SNMP, SNMPv2, SNMPv3, and RMON 1 and 2 , 1999 .

[98]  Mznah Al-Rodhaan,et al.  Achieving Proportional Fairness via AP Power Control in Multi-Rate WLANs , 2011, IEEE Transactions on Wireless Communications.

[99]  Massimo Bernaschi,et al.  A CAPWAP-based solution for frequency planning in large scale networks of WiFi Hot-Spots , 2011, Comput. Commun..

[100]  Nico Bayer,et al.  CloudMAC: torwards software defined WLANs , 2012, Mobicom '12.

[101]  Wendong Ge,et al.  Channel assignment with fairness for multi-AP WLAN based on distributed coordination function , 2011, 2011 IEEE Wireless Communications and Networking Conference.

[102]  Xiaoli Zhe,et al.  A Polynomial Time Algorithm for Minimizing a Nondecreasing Supermodular Set Function and Its Performance Guarantee , 2022 .

[103]  Edward W. Knightly,et al.  IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [Invited Paper] , 2014, IEEE Communications Magazine.

[104]  Justin Manweiler,et al.  Predicting length of stay at WiFi hotspots , 2013, 2013 Proceedings IEEE INFOCOM.

[105]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[106]  Bo Wang,et al.  Measurement-Based Channel Management in WLANs , 2010, 2010 IEEE Wireless Communication and Networking Conference.

[107]  Alec Wolman,et al.  Dyson: An Architecture for Extensible Wireless LANs , 2010, USENIX Annual Technical Conference.

[108]  Jürgen Schönwälder,et al.  Network Configuration Protocol (NETCONF) , 2011, RFC.

[109]  Nick McKeown,et al.  BeHop: a testbed for dense WiFi networks , 2014, WiNTECH '14.

[110]  Keith McCloghrie,et al.  Protocol Operations for version 2 of the Simple Network Management Protocol (SNMPv2) , 1993, RFC.

[111]  John V. Guttag,et al.  Time-based Fairness Improves Performance in Multi-Rate WLANs , 2004, USENIX Annual Technical Conference, General Track.

[112]  Song Han,et al.  RT-WiFi: Real-Time High-Speed Communication Protocol for Wireless Cyber-Physical Control Applications , 2013, 2013 IEEE 34th Real-Time Systems Symposium.

[113]  Marko Höyhtyä,et al.  Spectrum Occupancy Measurements: A Survey and Use of Interference Maps , 2016, IEEE Communications Surveys & Tutorials.

[114]  Krzysztof Grochla,et al.  Performance evaluation of SNMP, NETCONF and CWMP management protocols in wireless network , 2015 .

[115]  Anja Feldmann,et al.  Thor: Energy programmable WiFi networks , 2013, 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[116]  Andreas Kassler,et al.  QoS enabled WiFi MAC layer processing as an example of a NFV service , 2015, Proceedings of the 2015 1st IEEE Conference on Network Softwarization (NetSoft).

[117]  Boris Bellalta,et al.  Analysis of Dynamic Channel Bonding in Dense Networks of WLANs , 2015, IEEE Transactions on Mobile Computing.

[118]  David Malone,et al.  Measuring Transmission Opportunities in 802.11 Links , 2010, IEEE/ACM Transactions on Networking.

[119]  Ilenia Tinnirello,et al.  Remarks on IEEE 802.11 DCF performance analysis , 2005, IEEE Communications Letters.

[120]  Raj Jain,et al.  A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems , 1998, ArXiv.

[121]  Vincenzo Mancuso,et al.  CROWD: An SDN Approach for DenseNets , 2013, 2013 Second European Workshop on Software Defined Networks.

[122]  Jeff M. Smith,et al.  Controller-Based Wireless LAN Fundamentals: An end-to-end reference guide to design, deploy, manage, and secure 802.11 wireless networks , 2010 .

[123]  Ming Zhu,et al.  SDWLAN: A flexible architecture of enterprise WLAN for client-unaware fast AP handoff , 2014, Fifth International Conference on Computing, Communications and Networking Technologies (ICCCNT).

[124]  Dan Pei,et al.  Understanding the Impact of AP Density on WiFi Performance Through Real-World Deployment , 2016, 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN).

[125]  Lili Qiu,et al.  Traffic-Aware Channel Assignment in Enterprise Wireless LANs , 2007, 2007 IEEE International Conference on Network Protocols.

[126]  Laurent Massoulié,et al.  A queueing analysis of max-min fairness, proportional fairness and balanced fairness , 2006, Queueing Syst. Theory Appl..

[127]  Zhi Ding,et al.  Distributed Power Control for Cognitive User Access based on Primary Link Control Feedback , 2010, 2010 Proceedings IEEE INFOCOM.

[128]  Mourad Debbabi,et al.  A Survey and a Layered Taxonomy of Software-Defined Networking , 2014, IEEE Communications Surveys & Tutorials.

[129]  Myungchul Kim,et al.  Interference-aware self-optimizing Wi-Fi for high efficiency internet of things in dense networks , 2016, Comput. Commun..

[130]  M. Bernardine Dias,et al.  The Dynamic Hungarian Algorithm for the Assignment Problem with Changing Costs , 2007 .

[131]  Thierry Turletti,et al.  A survey of QoS enhancements for IEEE 802.11 wireless LAN , 2004, Wirel. Commun. Mob. Comput..

[132]  Asaf Cidon,et al.  Flashback: decoupled lightweight wireless control , 2012, CCRV.

[133]  Minlan Yu,et al.  Software Defined Traffic Measurement with OpenSketch , 2013, NSDI.

[134]  Yang Richard Yang,et al.  Proportional Fairness in Multi-Rate Wireless LANs , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[135]  Henrique D. Moura,et al.  Ethanol: Software defined networking for 802.11 Wireless Networks , 2015, 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM).

[136]  Mahesh K. Marina,et al.  Programming Abstractions for Software-Defined Wireless Networks , 2015, IEEE Transactions on Network and Service Management.

[137]  Alexander Clemm,et al.  Network Management Fundamentals , 2006 .

[138]  Kevin C. Almeroth,et al.  Joint rate and channel width adaptation for 802.11 MIMO wireless networks , 2013, 2013 IEEE International Conference on Sensing, Communications and Networking (SECON).

[139]  Alexander Sprintson,et al.  ÆtherFlow: Principled Wireless Support in SDN , 2015, 2015 IEEE 23rd International Conference on Network Protocols (ICNP).

[140]  Alec Wolman,et al.  Designing High Performance Enterprise Wi-Fi Networks , 2008, NSDI.

[141]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[142]  F. Richard Yu,et al.  Industrial Internet: A Survey on the Enabling Technologies, Applications, and Challenges , 2017, IEEE Communications Surveys & Tutorials.

[143]  Qi Hao,et al.  A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation , 2014, IEEE Communications Surveys & Tutorials.

[144]  Xiuzhen Cheng,et al.  Coverage adjustment for load balancing with an AP service availability guarantee in WLANs , 2014, Wirel. Networks.

[145]  Laurent Vanbever,et al.  HotSwap: correct and efficient controller upgrades for software-defined networks , 2013, HotSDN '13.

[146]  Shueng-Han Gary Chan,et al.  An approximation algorithm for AP association under user migration cost constraint , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[147]  Qian Dong,et al.  Evaluation of the reliability of RSSI for indoor localization , 2012, 2012 International Conference on Wireless Communications in Underground and Confined Areas.

[148]  Kang G. Shin,et al.  Fair and Efficient Coexistence of Heterogeneous Channel Widths in Next-Generation Wireless LANs , 2016, IEEE Transactions on Mobile Computing.

[149]  Nick McKeown,et al.  OpenFlow: enabling innovation in campus networks , 2008, CCRV.

[150]  Andrea Zanella,et al.  Best Practice in RSS Measurements and Ranging , 2016, IEEE Communications Surveys & Tutorials.

[151]  Alec Wolman,et al.  A Location-Based Management System for Enterprise Wireless LANs , 2007, NSDI.

[152]  Liu Yang,et al.  Demand-Aware Load Balancing in Wireless LANs Using Association Control , 2014, 2015 IEEE Global Communications Conference (GLOBECOM).

[153]  Vijay Sivaraman,et al.  Virtualizing the access network via open APIs , 2013, CoNEXT.

[154]  Yusuke Asai,et al.  Network controlled frequency channel and bandwidth allocation scheme for IEEE 802.11a/n/ac wireless LANs: RATOP , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[155]  Ming Zhu,et al.  Supporting “One Big AP” illusion in enterprise WLAN: An SDN-based solution , 2014, 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP).

[156]  Koichi Ishihara,et al.  Network-Controlled Channel Allocation Scheme for IEEE 802.11 Wireless LANs: Experimental and Simulation Study , 2014, 2014 IEEE 79th Vehicular Technology Conference (VTC Spring).

[157]  Dhananjay Singh,et al.  A survey of Internet-of-Things: Future vision, architecture, challenges and services , 2014, 2014 IEEE World Forum on Internet of Things (WF-IoT).

[158]  Magnos Martinello,et al.  A Survey on SDN Programming Languages: Toward a Taxonomy , 2016, IEEE Communications Surveys & Tutorials.

[159]  K. Nakauchi,et al.  Airtime-based resource control in wireless LANs for wireless network virtualization , 2012, 2012 Fourth International Conference on Ubiquitous and Future Networks (ICUFN).

[160]  Rob Sherwood,et al.  Blueprint for introducing innovation into wireless mobile networks , 2010, VISA '10.

[161]  Rob Sherwood,et al.  OpenRoads: empowering research in mobile networks , 2010, CCRV.

[162]  Andrea Zanellaza,et al.  Best Practice in RSS Measurements and Ranging , 2016 .

[163]  Mznah Al-Rodhaan,et al.  AP Association for Proportional Fairness in Multirate WLANs , 2014, IEEE/ACM Transactions on Networking.

[164]  David Malone,et al.  Modeling the 802.11 distributed coordination function in non-saturated conditions , 2005, IEEE Communications Letters.

[165]  Andreas Kassler,et al.  QoS Management for WiFi MAC Layer Processing in the Cloud: Demo Description , 2015, Q2SWinet@MSWiM.

[166]  Konstantina Papagiannaki,et al.  CENTAUR: realizing the full potential of centralized wlans through a hybrid data path , 2009, MobiCom '09.

[167]  Jeffrey D. Case,et al.  Simple Network Management Protocol (SNMP) , 1989, RFC.

[168]  Bryan Ng,et al.  WiFi Network Access Control for IoT Connectivity with Software Defined Networking , 2017, MMSys.

[169]  Anja Feldmann,et al.  Logically centralized?: state distribution trade-offs in software defined networks , 2012, HotSDN '12.

[170]  Fabrizio Granelli,et al.  EmPOWER: A Testbed for Network Function Virtualization Research and Experimentation , 2013, 2013 IEEE SDN for Future Networks and Services (SDN4FNS).

[171]  Joerg Swetina,et al.  Toward a standardized common M2M service layer platform: Introduction to oneM2M , 2014, IEEE Wireless Communications.

[172]  Pavlin Radoslavov,et al.  ONOS: towards an open, distributed SDN OS , 2014, HotSDN.

[173]  Seung-Jae Han,et al.  Fairness and Load Balancing in Wireless LANs Using Association Control , 2004, IEEE/ACM Transactions on Networking.

[174]  Mohsen Guizani,et al.  On WiFi Offloading in Heterogeneous Networks: Various Incentives and Trade-Off Strategies , 2016, IEEE Communications Surveys & Tutorials.

[175]  David Walker,et al.  Modular SDN Programming with Pyretic , 2013, login Usenix Mag..

[176]  Nicholas Bambos,et al.  BEST-AP: Non-intrusive estimation of available bandwidth and its application for dynamic access point selection , 2014, Comput. Commun..

[177]  Katia Obraczka,et al.  Characterizing User Activity in WiFi Networks: University Campus and Urban Area Case Studies , 2016, MSWiM.

[178]  Mohsen Guizani,et al.  Toward better horizontal integration among IoT services , 2015, IEEE Communications Magazine.

[179]  Nalini Venkatasubramanian,et al.  A Software Defined Networking architecture for the Internet-of-Things , 2014, 2014 IEEE Network Operations and Management Symposium (NOMS).

[180]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[181]  Jaume Barceló,et al.  On the Interactions Between Multiple Overlapping WLANs Using Channel Bonding , 2014, IEEE Transactions on Vehicular Technology.

[182]  Kyunghan Lee,et al.  Mobile Data Offloading: How Much Can WiFi Deliver? , 2013, IEEE/ACM Transactions on Networking.

[183]  Antonio Alfredo Ferreira Loureiro,et al.  Defining a Wireless Sensor Network Management Protocol , 2005, LANOMS.

[184]  Philip Levis,et al.  OpenRadio: a programmable wireless dataplane , 2012, HotSDN '12.

[185]  Ekram Hossain,et al.  Channel assignment schemes for infrastructure-based 802.11 WLANs: A survey , 2010, IEEE Communications Surveys & Tutorials.

[186]  Srinivasan Seshan,et al.  Clearing the RF smog: making 802.11n robust to cross-technology interference , 2011, SIGCOMM.

[187]  Li-Hsing Yen,et al.  Stability and fairness of native AP selection games in IEEE 802.11 access networks , 2010, 2010 Seventh International Conference on Wireless and Optical Communications Networks - (WOCN).

[188]  Xin Liu,et al.  Performance of IEEE 802.11 under Jamming , 2008, Mobile Networks and Applications.

[189]  Xianfu Chen,et al.  Software defined mobile networks: concept, survey, and research directions , 2015, IEEE Communications Magazine.

[190]  Rob Sherwood,et al.  FlowVisor: A Network Virtualization Layer , 2009 .

[191]  Yan Grunenberger,et al.  Experimenting With Commodity 802.11 Hardware: Overview and Future Directions , 2015, IEEE Communications Surveys & Tutorials.

[192]  Boris Bellalta,et al.  IEEE 802.11ax: High-efficiency WLANS , 2015, IEEE Wireless Communications.

[193]  Nei Kato,et al.  DAPA: Capacity Optimization in Wireless Networks Through a Combined Design of Density of Access Points and Partially Overlapped Channel Allocation , 2016, IEEE Transactions on Vehicular Technology.