Effect of thermo-hygro glycol aging on the damage mechanisms of short glass-fiber reinforced polyamide 66
暂无分享,去创建一个
[1] Qiang Chen,et al. Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation , 2021, Mechanics of Materials.
[2] M. Baghani,et al. Hygrothermal aging effects on the mechanical properties of 3D printed composites with different stacking sequence of continuous glass fiber layers , 2021 .
[3] S. Delalande,et al. Detection and evaluation of barely visible impact damage in woven glass fabric reinforced polyamide 6.6/6 composite using ultrasonic imaging, X-ray tomography and optical profilometry , 2020 .
[4] T. Koch,et al. Accelerated aging of a glass fiber/polyurethane composite for automotive applications , 2019, Polymer Testing.
[5] A. Clément,et al. On the identification of the coefficient of moisture expansion of polyamide-6: Accounting differential swelling strains and plasticization , 2018 .
[6] H. Rolland. Comportement en fatigue et mécanismes d'endommagement du polyamide 6,6 renforcé de fibres courtes – Application à la fatigue sous chargement d'amplitude variable , 2017 .
[7] N. Declercq,et al. Investigation of Damage in Composites Using Nondestructive Nonlinear Acoustic Spectroscopy , 2017 .
[8] N. Saintier,et al. In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: Effects of fibre orientation and relative humidity , 2017 .
[9] Hassan Obeid. Durabilité de composites à matrice thermoplastique sous chargement hygro-mécanique : étude multi-physique et multi-échelle des relations microstructure-propriétés-états mécaniques , 2016 .
[10] Nicolas Saintier,et al. Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests , 2016 .
[11] A. Benaarbia,et al. Thermomechanical behavior of PA6.6 composites subjected to low cycle fatigue , 2015 .
[12] A. Benaarbia,et al. Influence of relative humidity and loading frequency on the PA6.6 thermomechanical cyclic behavior: Part II. Energy aspects , 2015 .
[13] A. Benaarbia,et al. Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspects , 2014 .
[14] Adil Benaarbia. Analyse énergétique du comportement thermomécanique du PA6.6 renforcé de fibres de verre , 2014 .
[15] N. Billon,et al. Time-Temperature-Water Content equivalence on dynamic mechanical response of Polyamide 6,6 , 2014 .
[16] N. Saintier,et al. Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66 , 2014 .
[17] M. F. Arif. Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection , 2014 .
[18] Yves Chemisky,et al. In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity , 2014 .
[19] F. Meraghni,et al. Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmission , 2013 .
[20] B. Klimkeit. Etude expérimentale et modélisation du comportement en fatigue multiaxiale d'un polymère renforcé pour application automobile , 2009 .
[21] J. Spoormaker,et al. Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6 , 1997 .
[22] Norio Sato,et al. Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation , 1991 .
[23] J. Spoormaker,et al. Fibre-matrix debonding stress analysis for short fibre-reinforced materials with matrix plasticity, finite element modelling and experimental verification , 1998 .
[24] R. Puffr,et al. On the Structure and Properties of Polyamides. XXVII. The Mechanism of Water Sorption in Polyamides , 1967 .