Effect of thermo-hygro glycol aging on the damage mechanisms of short glass-fiber reinforced polyamide 66

[1]  Qiang Chen,et al.  Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation , 2021, Mechanics of Materials.

[2]  M. Baghani,et al.  Hygrothermal aging effects on the mechanical properties of 3D printed composites with different stacking sequence of continuous glass fiber layers , 2021 .

[3]  S. Delalande,et al.  Detection and evaluation of barely visible impact damage in woven glass fabric reinforced polyamide 6.6/6 composite using ultrasonic imaging, X-ray tomography and optical profilometry , 2020 .

[4]  T. Koch,et al.  Accelerated aging of a glass fiber/polyurethane composite for automotive applications , 2019, Polymer Testing.

[5]  A. Clément,et al.  On the identification of the coefficient of moisture expansion of polyamide-6: Accounting differential swelling strains and plasticization , 2018 .

[6]  H. Rolland Comportement en fatigue et mécanismes d'endommagement du polyamide 6,6 renforcé de fibres courtes – Application à la fatigue sous chargement d'amplitude variable , 2017 .

[7]  N. Declercq,et al.  Investigation of Damage in Composites Using Nondestructive Nonlinear Acoustic Spectroscopy , 2017 .

[8]  N. Saintier,et al.  In situ X-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: Effects of fibre orientation and relative humidity , 2017 .

[9]  Hassan Obeid Durabilité de composites à matrice thermoplastique sous chargement hygro-mécanique : étude multi-physique et multi-échelle des relations microstructure-propriétés-états mécaniques , 2016 .

[10]  Nicolas Saintier,et al.  Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests , 2016 .

[11]  A. Benaarbia,et al.  Thermomechanical behavior of PA6.6 composites subjected to low cycle fatigue , 2015 .

[12]  A. Benaarbia,et al.  Influence of relative humidity and loading frequency on the PA6.6 thermomechanical cyclic behavior: Part II. Energy aspects , 2015 .

[13]  A. Benaarbia,et al.  Influence of relative humidity and loading frequency on the PA6.6 cyclic thermomechanical behavior: Part I. mechanical and thermal aspects , 2014 .

[14]  Adil Benaarbia Analyse énergétique du comportement thermomécanique du PA6.6 renforcé de fibres de verre , 2014 .

[15]  N. Billon,et al.  Time-Temperature-Water Content equivalence on dynamic mechanical response of Polyamide 6,6 , 2014 .

[16]  N. Saintier,et al.  Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66 , 2014 .

[17]  M. F. Arif Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection , 2014 .

[18]  Yves Chemisky,et al.  In situ damage mechanisms investigation of PA66/GF30 composite: Effect of relative humidity , 2014 .

[19]  F. Meraghni,et al.  Damage induced anisotropy and stiffness reduction evaluation in composite materials using ultrasonic wave transmission , 2013 .

[20]  B. Klimkeit Etude expérimentale et modélisation du comportement en fatigue multiaxiale d'un polymère renforcé pour application automobile , 2009 .

[21]  J. Spoormaker,et al.  Fatigue fracture mechanisms and fractography of short-glassfibre-reinforced polyamide 6 , 1997 .

[22]  Norio Sato,et al.  Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation , 1991 .

[23]  J. Spoormaker,et al.  Fibre-matrix debonding stress analysis for short fibre-reinforced materials with matrix plasticity, finite element modelling and experimental verification , 1998 .

[24]  R. Puffr,et al.  On the Structure and Properties of Polyamides. XXVII. The Mechanism of Water Sorption in Polyamides , 1967 .