Time-dependent correlation functions in open quadratic fermionic systems
暂无分享,去创建一个
[1] Chu Guo,et al. Solutions for bosonic and fermionic dissipative quadratic open systems , 2017 .
[2] Jian-Jun Dong,et al. The A-Cycle Problem In XY model with Ring Frustration , 2017, 1703.00595.
[3] B. Shao,et al. Quantum speed limit of the evolution of the qubits in a finite XY spin chain , 2017 .
[4] F. Essler,et al. Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.
[5] J. Caux. The Quench Action , 2016, 1603.04689.
[6] J. Cardy,et al. Quantum quenches in 1 + 1 dimensional conformal field theories , 2016, 1603.02889.
[7] B. Shao,et al. Quantum speed limit and a signal of quantum criticality , 2016, Scientific Reports.
[8] M. Fagotti. Local conservation laws in spin-12 XY chains with open boundary conditions , 2016, 1601.02011.
[9] P. Zanardi,et al. Dynamical response theory for driven-dissipative quantum systems , 2015, 1512.07860.
[10] T. Prosen. Matrix product solutions of boundary driven quantum chains , 2015, 1504.00783.
[11] A. Läuchli,et al. "Light-cone" dynamics after quantum quenches in spin chains. , 2014, Physical review letters.
[12] P. Zanardi,et al. Quantum information-geometry of dissipative quantum phase transitions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] J. Ignacio Cirac,et al. Noise-driven dynamics and phase transitions in fermionic systems , 2012, 1207.1653.
[14] T. Prosen,et al. A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains , 2012, 1203.0943.
[15] M. Ganahl,et al. Observation of complex bound states in the spin-1/2 Heisenberg XXZ chain using local quantum quenches. , 2011, Physical review letters.
[16] T. Prosen,et al. Transport properties of a boundary-driven one-dimensional gas of spinless fermions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] Tomaž Prosen,et al. Nonequilibrium phase transition in a periodically driven XY spin chain. , 2011, Physical review letters.
[18] M. Znidaric. Solvable quantum nonequilibrium model exhibiting a phase transition and a matrix product representation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] A. Dzhioev,et al. Super-fermion representation of quantum kinetic equations for the electron transport problem. , 2010, The Journal of chemical physics.
[20] T. Prosen,et al. Quantization over boson operator spaces , 2010, 1007.2921.
[21] T. Prosen,et al. Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain , 2010, 1007.2922.
[22] M. Znidaric. Exact solution for a diffusive nonequilibrium steady state of an open quantum chain , 2010, 1005.1271.
[23] Tomaz Prosen,et al. Spectral theorem for the Lindblad equation for quadratic open fermionic systems , 2010, 1005.0763.
[24] Tomaz Prosen,et al. Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition , 2009, 0910.0195.
[25] K. Sengupta,et al. ENTANGLEMENT PRODUCTION DUE TO QUENCH DYNAMICS OF AN ANISOTROPIC XY CHAIN IN A TRANSVERSE FIELD , 2009, 0904.1059.
[26] Tomaz Prosen,et al. Operator space entanglement entropy in XY spin chains , 2009, 0903.2432.
[27] H. Schoeller,et al. A perturbative nonequilibrium renormalization group method for dissipative quantum mechanics , 2009, 0902.1449.
[28] Tomaz Prosen,et al. Quantum phase transition in a far-from-equilibrium steady state of an XY spin chain. , 2008, Physical review letters.
[29] P. Calabrese,et al. Evolution of entanglement entropy following a quantum quench : Analytic results for the XY chain in a transverse magnetic field , 2008, 0804.3559.
[30] T. Prosen. Third quantization: a general method to solve master equations for quadratic open Fermi systems , 2008, 0801.1257.
[31] A. Millis,et al. Nonequilibrium quantum criticality in open electronic systems. , 2006, Physical review letters.
[32] B. Doyon. Finite-temperature form factors in the free Majorana theory , 2005, hep-th/0506105.
[33] D. Karevski. RELAXATION IN QUANTUM SPIN CHAINS: FREE FERMIONIC MODELS , 2004 .
[34] G. Milburn,et al. Quantum technology: the second quantum revolution , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[35] A. Starace,et al. Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. , 2002, Physical review letters.
[36] A. Kitaev. Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.
[37] H. Umezawa,et al. A Unified formalism of thermal quantum field theory , 1994 .
[38] S. Hammarling. Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .
[39] David E. Evans. Irreducible quantum dynamical semigroups , 1977 .
[40] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[41] H. Capel,et al. On a soluble model of an antiferromagnetic chain with Dzyaloshinsky interactions. II , 1975 .
[42] P. Mazur,et al. Time correlation functions in the a-cyclic XY model. I , 1973 .
[43] Eytan Barouch,et al. Statistical Mechanics of the XY Model. III , 1970 .
[44] E. Lieb,et al. Two Soluble Models of an Antiferromagnetic Chain , 1961 .
[45] T. Niemeijer. SOME EXACT CALCULATIONS ON A CHAIN OF SPINS $sup 1$/$sub 2$. II. , 1968 .
[46] T. Niemeijer. Some exact calculations on a chain of spins {1}/{2} II , 1967 .