Oriented Interval Greedoids

We propose a definition of an oriented interval greedoid that simultaneously generalizes the notion of an oriented matroid and the construction on antimatroids introduced by L.J. Billera, S.K. Hsiao, and J.S. Provan in Enumeration in convex geometries and associated polytopal subdivisions of spheres (Discrete Comput. Geom. 39(1–3):123–137, 2008). As for oriented matroids, associated to each oriented interval greedoid is a spherical simplicial complex whose face enumeration depends only on the underlying interval greedoid.

[1]  Richard Ehrenborg,et al.  Thec-2d-Index of Oriented Matroids , 1997, J. Comb. Theory, Ser. A.

[2]  P. Diaconis,et al.  Random walks and hyperplane arrangements , 1998 .

[3]  Anders Björner Random Walks, Arrangements, Cell Complexes, Greedoids, and Self-Organizing Libraries , 2008 .

[4]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[5]  J. Stembridge Enriched p-partitions , 1997 .

[6]  Günter M. Ziegler,et al.  Matroid Applications: Introduction to Greedoids , 1992 .

[7]  R. Ehrenborg On Posets and Hopf Algebras , 1996 .

[8]  Kenneth S. Brown,et al.  Semigroups, Rings, and Markov Chains , 2000 .

[9]  B. Sturmfels Oriented Matroids , 1993 .

[10]  Michelle L. Wachs,et al.  On lexicographically shellable posets , 1983 .

[11]  P. Hanlon,et al.  A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements , 1999 .

[12]  M. Wachs SHELLABLE NONPURE COMPLEXES AND POSETS , 1996 .

[13]  Richard P. Stanley,et al.  Finite lattices and Jordan-Hölder sets , 1974 .

[14]  A. Björner Shellable and Cohen-Macaulay partially ordered sets , 1980 .

[15]  Benjamin Steinberg,et al.  Möbius functions and semigroup representation theory , 2006, J. Comb. Theory, Ser. A.

[16]  Marcelo Aguiar,et al.  Coxeter Groups and Hopf Algebras , 2006 .

[17]  Franco V. Saliola On the quiver of the descent algebra , 2007, 0708.4213.

[18]  A. Björner Topological methods , 1996 .

[19]  G. Ziegler,et al.  Combinatorial stratification of complex arrangements , 1992 .

[20]  Andrew Klapper,et al.  A new index for polytopes , 1991, Discret. Comput. Geom..

[21]  J. Scott Provan,et al.  Enumeration in Convex Geometries and Associated Polytopal Subdivisions of Spheres , 2008, Discret. Comput. Geom..

[22]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[23]  Louis J. Billera,et al.  Peak quasisymmetric functions and Eulerian enumeration , 2003, 0706.3486.

[24]  Michelle L. Wachs,et al.  Shellable nonpure complexes and posets. II , 1996 .

[25]  Ettore Fornasini,et al.  2D Markov chains , 1990 .