Practical Algorithms for Low-Discrepancy 2-Colorings

We present practical approaches for low-discrepancy 2-colorings in the hypergraph of arithmetic progressions. A simple randomized algorithm, a deterministic combinatorial algorithm (Sarkozy 1974), and three estimation of distribution algorithms are compared. The best of them experimentally achieves a constant-factor approximation.

[1]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[2]  Michael Defoin-Platel,et al.  A versatile quantum-inspired evolutionary algorithm , 2007, 2007 IEEE Congress on Evolutionary Computation.

[3]  Chellapilla Patvardhan,et al.  A New QEA Computing Near-Optimal Low-Discrepancy Colorings in the Hypergraph of Arithmetic Progressions , 2013, SEA.

[4]  Chellapilla Patvardhan,et al.  Solution of real-parameter optimization problems using novel Quantum Evolutionary Algorithm with applications in power dispatch , 2009, 2009 IEEE Congress on Evolutionary Computation.

[5]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[6]  Jong-Hwan Kim,et al.  On setting the parameters of quantum-inspired evolutionary algorithm for practical application , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[7]  Xavier Llorà,et al.  Towards billion-bit optimization via a parallel estimation of distribution algorithm , 2007, GECCO '07.

[8]  Michael Defoin-Platel,et al.  Quantum-Inspired Evolutionary Algorithm: A Multimodel EDA , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[10]  Martin Pelikan,et al.  An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..

[11]  Jiří Matoušek,et al.  Discrepancy in arithmetic progressions , 1996 .

[12]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[13]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[14]  Chellapilla Patvardhan,et al.  A hybrid quantum evolutionary algorithm for solving engineering optimization problems , 2010, Int. J. Hybrid Intell. Syst..

[15]  K. F. Roth Remark concerning integer sequences , 1964 .

[16]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[17]  David E. Goldberg,et al.  The compact genetic algorithm , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[18]  Nikhil Bansal,et al.  Constructive Algorithms for Discrepancy Minimization , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.