Hysteresis identification and dynamic responses of the impact drive mechanism

Abstract The main objective of this paper is to identify the hysteresis effect of a piezoelectric element (PE) and show its influence on the impact drive mechanism (IDM) which is a piezoelectric actuator (PA). As the IDM takes action due to the piezoelectric force, a Leuven model of the frictional force is proposed to modify the dynamic equations. For completely realizing the dynamic model, an adaptive identification method is quoted to experimentally identify the hysteresis parameters of the Bouc–Wen model. Moreover, a feedforward compensator is designed to make reparation the loss force of the PE due to nonlinearity of the hysteresis effect. Finally, simulation results of our compensator and the designed voltage waveforms are taken as the input commands to validate the excellent tracking performances of the IDM.

[1]  Naotake Mohri,et al.  Effect of lubrication on impact drive mechanism , 1998 .

[2]  Musa Jouaneh,et al.  Modeling hysteresis in piezoceramic actuators , 1995 .

[3]  Toshiro Higuchi,et al.  A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part I: experimental design and results , 2003 .

[4]  D. Collard,et al.  Electrostatic impact-drive microactuator , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[5]  Carl J. Kempf,et al.  Disturbance observer and feedforward design for a high-speed direct-drive positioning table , 1999, IEEE Trans. Control. Syst. Technol..

[6]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[7]  Toshiro Higuchi,et al.  Dynamic Responses of a Self-Moving Precision Positioning Stage Impacted by a Spring-Mounted Piezoelectric Actuator , 2003 .

[8]  T. Low,et al.  Modeling of a three-layer piezoelectric bimorph beam with hysteresis , 1995 .

[9]  Satoshi Konishi,et al.  Acoustic impedance control system using a compact impact drive actuator , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[10]  Andrew W. Smyth,et al.  On-Line Identification of Hysteretic Systems , 1998 .

[11]  T. Y. Ng,et al.  Optimization of a piezoelectric ceramic actuator , 2000 .

[12]  Toshiro Higuchi,et al.  Micro Robot Arm Utilizing Rapid Deformations of Piezoelectric Elements , 1989, J. Robotics Mechatronics.

[13]  M. Yar,et al.  Parameter estimation for hysteretic systems , 1987 .

[14]  Jan Swevers,et al.  Modification of the Leuven integrated friction model structure , 2002, IEEE Trans. Autom. Control..

[15]  Toshiro Higuchi,et al.  A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part II: theoretical analysis , 2003 .

[16]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[17]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .