An adaptive B-spline representation of piecewise polynomial functions for multilevel approximation
暂无分享,去创建一个
[1] Paul Sablonnière,et al. Recent Progress on Univariate and Multivariate Polynomial and Spline Quasi-interpolants , 2005 .
[2] T. Lyche. Discrete B-Splines and Conversion Problems , 1990 .
[3] Ahmed Tijini,et al. A simple method for smoothing functions and compressing Hermite data , 2005, Adv. Comput. Math..
[4] T. Lyche,et al. Some examples of quasi-interpolants constructed from local spline projectors , 2001 .
[5] L. Schumaker,et al. Local Spline Approximation Methods , 1975 .
[6] Wolfgang Dahmen,et al. C 1 -hierarchical bases , 1994 .
[7] P. Oswald,et al. Hierarchical conforming finite element methods for the biharmonic equation , 1992 .
[8] A. Mazroui,et al. Recursive computation of bivariate Hermite spline interpolants , 2007 .
[9] Tom Lyche,et al. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .
[10] M. Marsden. An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .
[11] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[12] Harry Yserentant,et al. Hierarchical bases , 1992 .
[13] C. R. Deboor,et al. A practical guide to splines , 1978 .