Characteristics of cirrus clouds and its radiative properties based on lidar observation over Chung-Li, Taiwan

Abstract In this paper, characterization of cirrus clouds are made by using data from ground based polarization lidar and radiosonde measurements over Chung-Li (24.58°N, 121.10°E), Taiwan for a period of 1999–2006. During this period, the occurrence of cirrus clouds is about 37% of the total measurement nights over the lidar site. Analysis of the measurement gives the statistical characteristics about the macrophysical properties such as occurrence height, ambient temperature, and its geometrical thickness while the microphysical properties are interpreted in terms of extinction coefficient, optical depth, effective lidar ratio and depolarization ratio. The effective lidar ratio has been retrieved by using the simulation technique of backscattered lidar signals. The effect of multiple scattering has been taken into the account by a model calculation. Summer (Jun–Aug) shows the maximum appearances of cirrus due to its formation mechanism. It is shown that tropopause cirrus clouds may occur with a probability of about 24%. These clouds are usually optically thin and having laminar in structure with some cases resembling the characteristics similar to that of polar stratospheric clouds (PSCs). The radiative properties of the cirrus clouds are also discussed in detail by the empirical equations with results show a positive feedback on any climate change.

[1]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[2]  Albert Ansmann,et al.  Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds: A case study , 1996 .

[3]  T. Charlock Cloud optical feedback and climate stability in a radiative-convective model , 1982 .

[4]  L R Bissonnette,et al.  Lidar effective multiple-scattering coefficients in cirrus clouds. , 1997, Applied optics.

[5]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[6]  Q. Fu,et al.  Parameterization of the Radiative Properties of Cirrus Clouds , 1993 .

[7]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[8]  G. S. Kent,et al.  Airborne lidar observations of Arctic polar stratospheric clouds , 1986 .

[9]  Dimitris Balis,et al.  Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station , 2007 .

[10]  J. Nee,et al.  Lidar Observation of the Cirrus Cloud in the Tropopause at Chung-Li (25°N, 121°E) , 1998 .

[11]  M. Yao,et al.  Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback , 1981 .

[12]  K. Stamnes,et al.  Climate sensitivity to cloud optical properties , 2000 .

[13]  Kenneth Sassen,et al.  Lidar Cloud Research , 1995 .

[14]  J. Nee,et al.  Lidar ratio and depolarization ratio for cirrus clouds. , 2002, Applied optics.

[15]  Jean-Luc Baray,et al.  Tropical cirrus clouds: A possible sink for ozone , 2000 .

[16]  L. Radke,et al.  A Summary of the Physical Properties of Cirrus Clouds , 1990 .

[17]  E. Eloranta Practical model for the calculation of multiply scattered lidar returns. , 1993, Applied optics.

[18]  Toshiyuki Murayama,et al.  Depolarization Ratio Measurements in the Atmospheric Boundary Layer by Lidar in Tokyo , 1996 .

[19]  K. Sassen,et al.  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties , 2002 .

[20]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[21]  Dennis L. Hartmann,et al.  Earth Radiation Budget data and climate research , 1986 .

[22]  Chih-Wei Chiang,et al.  Optical properties of tropospheric aerosols based on measurements of lidar, sun-photometer, and visibility at Chung-Li (25°N, 121°E) , 2007 .

[23]  Parameterization of Infrared Absorption in Midlatitude Cirrus Clouds , 2003 .

[24]  S. Twomey,et al.  Aerosols, clouds and radiation , 1991 .

[25]  Eric J. Pitcher,et al.  The Response of a Spectral General Circulation Model to Refinements in Radiative Processes , 1983 .

[26]  Chester S. Gardner,et al.  Observations by the Lidar In‐Space Technology Experiment (LITE) of high‐altitude cirrus clouds over the equator in regions exhibiting extremely cold temperatures , 2001 .

[27]  A Ismaelli,et al.  Laboratory simulations of lidar returns from clouds. , 1996, Applied optics.

[28]  N. L. Abshire,et al.  Some Microphysical Properties of an Ice Cloud from Lidar Observation of Horizontally Oriented Crystals , 1978 .

[29]  M. Baker,et al.  Cloud Microphysics and Climate , 1997 .

[30]  T. Ackerman,et al.  Heating rates in tropical anvils , 1988 .

[31]  Barbara E. Carlson,et al.  T‐Matrix computations of zenith‐enhanced lidar backscatter from horizontally oriented ice plates , 1997 .

[32]  K. Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties , 2001 .

[33]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[34]  K. Parameswaran,et al.  Temperature dependence of tropical cirrus properties and radiative effects , 2005 .

[35]  Lidar observations of equatorial cirrus clouds at Mahé Seychelles , 2003 .

[36]  V. Ramanathan,et al.  Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño , 1991, Nature.

[37]  J. Comstock,et al.  Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts , 2002 .

[38]  G. McFarquhar,et al.  Thin and Subvisual Tropopause Tropical Cirrus: Observations and Radiative Impacts , 2000 .

[39]  S. Young,et al.  Analysis of lidar backscatter profiles in optically thin clouds. , 1995, Applied optics.

[40]  Albert Ansmann,et al.  Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol‐polluted northeast and clean maritime southwest monsoon , 2007 .

[41]  C Y She,et al.  Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars. , 2001, Applied optics.

[42]  J. Biele,et al.  Polarization Lidar: Correction of instrumental effects. , 2000, Optics express.

[43]  E. Eloranta,et al.  The 27-28 October 1986 FIRE IFO cirrus case study : cloud optical properties determined by high spectral resolution lidar , 1990 .

[44]  Greg Michael McFarquhar,et al.  The role of spaceborne millimetre-wave radar in the global monitoring of ice cloud , 1995 .

[45]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[46]  Greg Michael McFarquhar,et al.  The Role of Spaceborne Millimeter-Wave Radar in the Global Monitoring of Ice Cloud , 1995 .

[47]  Kenneth Sassen,et al.  Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies , 1989 .

[48]  Joseph J. Barrett,et al.  High-Resolution Raman Spectroscopy of Gases with cw-Laser Excitation* , 1967 .

[49]  J. Spinhirne,et al.  On the formation and persistence of subvisible cirrus clouds near the tropical tropopause , 1996 .

[50]  Harshvardhan,et al.  Temperature dependence of cirrus extinction - Implications for climate feedback , 1988 .

[51]  D. Hartmann,et al.  The Effect of Cloud Type on Earth's Energy Balance: Global Analysis , 1992 .

[52]  P Bruscaglioni,et al.  Laboratory simulations of lidar returns from clouds: experimental and numerical results. , 1993, Applied optics.

[53]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[54]  A. T. Young On the Rayleigh-Scattering Optical Depth of the Atmosphere , 1981 .

[55]  K Sassen,et al.  Corona-producing ice clouds: a case study of a cold mid-latitude cirrus layer. , 1998, Applied optics.

[56]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[57]  Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar , 1999 .

[58]  R. Hogan,et al.  Fast approximate calculation of multiply scattered lidar returns. , 2006, Applied optics.

[59]  V. Mitev,et al.  Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types , 1999 .

[60]  D. Winker,et al.  Laminar cirrus observed near the tropical tropopause by LITE , 1998 .