Optimal real-time estimation in diffusion tensor imaging.

Diffusion tensor imaging (DTI) constitutes the most used paradigm among the diffusion-weighted magnetic resonance imaging (DW-MRI) techniques due to its simplicity and application potential. Recently, real-time estimation in DW-MRI has deserved special attention, with several proposals aiming at the estimation of meaningful diffusion parameters during the repetition time of the acquisition sequence. Specifically focusing on DTI, the underlying model of the noise present in the acquired data is not taken into account, leading to a suboptimal estimation of the diffusion tensor. In this paper, we propose an optimal real-time estimation framework for DTI reconstruction in single-coil acquisitions. By including an online estimation of the time-changing noise variance associated to the acquisition process, the proposed method achieves the sequential best linear unbiased estimator. Results on both synthetic and real data show that our method outperforms those so far proposed, reaching the best performance of the existing proposals by processing a substantially lower number of diffusion images.

[1]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[2]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[3]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[4]  B W Kreher,et al.  Multitensor approach for analysis and tracking of complex fiber configurations , 2005, Magnetic resonance in medicine.

[5]  Carl-Fredrik Westin,et al.  Bias of Least Squares Approaches for Diffusion Tensor Estimation from Array Coils in DT-MRI , 2009, MICCAI.

[6]  Erick Jorge Canales-Rodríguez,et al.  Mathematical description of q‐space in spherical coordinates: Exact q‐ball imaging , 2009, Magnetic resonance in medicine.

[7]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[8]  Carl-Fredrik Westin,et al.  Geometrically constrained two-tensor model for crossing tracts in DWI. , 2006, Magnetic resonance imaging.

[9]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[10]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[11]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[12]  J. Dubois,et al.  Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets , 2006, Magnetic Resonance Materials in Physics, Biology and Medicine.

[13]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[14]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[15]  Carl-Fredrik Westin,et al.  A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk–Radon transform , 2010, NeuroImage.

[16]  Rachid Deriche,et al.  Apparent diffusion profile estimation from high angular resolution diffusion images , 2006, SPIE Medical Imaging.

[17]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[18]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[19]  Jean-Francois Mangin,et al.  Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering , 2008, Medical Image Anal..

[20]  Carl-Fredrik Westin,et al.  Restoration of DWI Data Using a Rician LMMSE Estimator , 2008, IEEE Transactions on Medical Imaging.

[21]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[22]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .

[23]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[24]  Santiago Aja-Fernández,et al.  Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models. , 2009, Magnetic resonance imaging.

[25]  Santiago Aja-Fernández,et al.  DWI filtering using joint information for DTI and HARDI , 2010, Medical Image Anal..

[26]  Jean-Francois Mangin,et al.  Real-time MR diffusion tensor and Q-ball imaging using Kalman filtering , 2008, Medical Image Anal..

[27]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[28]  Carl-Fredrik Westin,et al.  Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging , 2009, NeuroImage.

[29]  Andrew L. Alexander,et al.  Computation of Diffusion Function Measures in $q$ -Space Using Magnetic Resonance Hybrid Diffusion Imaging , 2008, IEEE Transactions on Medical Imaging.

[30]  Guillaume Gilbert,et al.  Impact of an Improved Combination of Signals From Array Coils in Diffusion Tensor Imaging , 2007, IEEE Transactions on Medical Imaging.

[31]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[32]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[33]  E. Bullmore,et al.  Formal characterization and extension of the linearized diffusion tensor model , 2005, Human brain mapping.

[34]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[35]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[36]  D. Bihan,et al.  Real-time Rician noise correction applied to real-time HARDI and HYDI , 2010 .

[37]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[38]  Daniel C Alexander,et al.  Optimal acquisition orders of diffusion‐weighted MRI measurements , 2007, Journal of magnetic resonance imaging : JMRI.

[39]  Ralph. Deutsch,et al.  Estimation Theory , 1966 .

[40]  Carl-Fredrik Westin,et al.  Diffusion k-tensor Estimation from Q-ball Imaging Using Discretized Principal Axes , 2006, MICCAI.

[41]  Rachid Deriche,et al.  Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets , 2009, Medical Image Anal..

[42]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[43]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[44]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .