Desktop Tower Defense Is NP-Hard

This paper proves the hardness of the Desktop Tower Defense game. Specifically, the problem of determining where to locate k turrets in the grid of size n × n in order to maximize the minimum distance from the starting point to the terminating point is shown to be NP-hard. The proof applied to the generalized version of the Desktop Tower Defense.

[1]  Alireza Bagheri,et al.  Hamiltonian Paths in Some Classes of Grid Graphs , 2012, J. Appl. Math..

[2]  Shigeki Iwata,et al.  Classes of Pebble Games and Complete Problems , 1979, SIAM J. Comput..

[3]  Hong Shen,et al.  An efficient algorithm for constructing Hamiltonian paths in meshes , 2002, Parallel Comput..

[4]  John Michael Robson,et al.  N by N Checkers is Exptime Complete , 1984, SIAM J. Comput..

[5]  Erik D. Demaine,et al.  Classic Nintendo games are (computationally) hard , 2015, Theor. Comput. Sci..

[6]  Giovanni Viglietta Gaming Is a Hard Job, but Someone Has to Do It! , 2013, Theory of Computing Systems.

[7]  Erik D. Demaine,et al.  Tetris is hard, even to approximate , 2002, Int. J. Comput. Geom. Appl..

[8]  Julian Togelius,et al.  Computational intelligence and tower defence games , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[9]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[10]  Christopher Umans,et al.  Hamiltonian cycles in solid grid graphs , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[11]  Michal Forisek Computational Complexity of Two-Dimensional Platform Games , 2010, FUN.

[12]  Graham Kendall,et al.  A Survey of NP-Complete Puzzles , 2008, J. Int. Comput. Games Assoc..

[13]  Georgii Gens,et al.  Complexity of approximation algorithms for combinatorial problems: a survey , 1980, SIGA.

[14]  A. Aggarwal The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .

[15]  Jayme Luiz Szwarcfiter,et al.  Hamilton Paths in Grid Graphs , 1982, SIAM J. Comput..

[16]  Erik D. Demaine,et al.  Pushing blocks is hard , 2003, Comput. Geom..

[17]  Christina Zamfirescu,et al.  Hamiltonian Properties of Grid Graphs , 1992, SIAM J. Discret. Math..

[18]  Rhio Sutoyo,et al.  Dynamic Difficulty Adjustment in Tower Defence , 2015 .

[19]  Zbigniew Michalewicz,et al.  Coevolutionary optimization of fuzzy logic intelligence for strategic decision support , 2005, IEEE Transactions on Evolutionary Computation.

[20]  Claude E. Shannon,et al.  Programming a computer for playing chess , 1950 .