Assimilation of thermal emission spectrometer atmospheric data during the Mars Global Surveyor aerobraking period

Abstract The Thermal Emission Spectrometer aboard the Mars Global Surveyor spacecraft has produced an extensive atmospheric data set, beginning during aerobraking and continuing throughout the extended scientific mapping phase. Temperature profiles for the atmosphere below about 40 km, surface temperatures and total dust and water ice opacities, can be retrieved from infrared spectra in nadir viewing mode. This paper describes assimilation of nadir retrievals from the spacecraft aerobraking period, L S = 190 ° – 260 ° , northern hemisphere autumn to winter, into a Mars general circulation model. The assimilation scheme is able to combine information from temperature and dust optical depth retrievals, making use of a model forecast containing information from the assimilation of earlier observations, to obtain a global, time-dependent analysis. Given sufficient temperature retrievals, the assimilation procedure indicates errors in the a priori dust distribution assumptions even when lacking dust observations; in this case there are relatively cold regions above the poles compared to a model which assumes a horizontally-uniform dust distribution. One major reason for using assimilation techniques is in order to investigate the transient wave behavior on Mars. Whilst the data from the 2-h spacecraft mapping orbit phase is much more suitable for assimilation, even the longer (45–24 h) period aerobraking orbit data contain useful information about the three-dimensional synoptic-scale martian circulation which the assimilation procedure can reconstruct in a consistent way. Assimilations from the period of the Noachis regional dust storm demonstrate that the combined assimilation of temperature and dust retrievals has a beneficial impact on the atmospheric analysis.

[1]  R. Haberle,et al.  Atmospheric effects on the remote determination of thermal inertia on mars , 1991 .

[2]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[3]  Jeffrey R. Barnes,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation , 1993 .

[4]  A. Ingersoll,et al.  A Steady-State Kalman Filter for Assimilating Data from a Single Polar Orbiting Satellite , 1995 .

[5]  Data assimilation with a Martian atmospheric GCM: An example using thermal data , 1997 .

[6]  David P. Hinson,et al.  Validation of martian meteorological data assimilation for MGS/TES using radio occultation measurements , 2006 .

[7]  G. Hunt Thermal infrared properties of the Martian atmosphere: 4. Predictions of the presence of dust and ice clouds from Viking IRTM spectral measurements , 1979 .

[8]  S. Lewis,et al.  An operational data assimilation scheme for the martian atmosphere , 1995 .

[9]  Terry Z. Martin,et al.  Thermal infrared opacity of the Mars atmosphere , 1986 .

[10]  B. Jakosky,et al.  Mars: North-polar atmospheric warming during dust storms , 1987 .

[11]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[12]  Martian atmospheric data assimilation with a simplified general circulation model: orbiter and lander networks , 1996 .

[13]  R. S. Bell,et al.  The Meteorological Office analysis correction data assimilation scheme , 1991 .

[14]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[15]  R. Haberle,et al.  Atmospheric effects on the mapping of Martian thermal inertia and thermally derived albedo , 1995 .

[16]  F. Palluconi,et al.  Thermal inertia mapping of Mars from 60°S to 60°N , 1981 .

[17]  L. Montabone,et al.  Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations , 2005 .

[18]  John C. Pearl,et al.  Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing , 2000 .

[19]  R. Wilson,et al.  Forced waves in the martian atmosphere from MGS TES nadir data , 2003 .

[20]  H. Kieffer,et al.  Thermal infrared properties of the Martian atmosphere: 2. The 15‐μm band measurements , 1979 .

[21]  R. Daley Atmospheric Data Analysis , 1991 .

[22]  S. Lewis,et al.  Equatorial jets in the dusty Martian atmosphere , 2003 .

[23]  F. Forget,et al.  Modeling the Martian dust cycle 2. Multiannual radiatively active dust transport simulations , 2002 .

[24]  P. Gierasch,et al.  Traveling waves in the martian atmosphere from MGS TES Nadir data , 2004 .

[25]  R. John Wilson,et al.  A general circulation model simulation of the Martian polar warming , 1997 .

[26]  Stephen R. Lewis,et al.  Atmospheric tides in a Mars general circulation model with data assimilation , 2005 .

[27]  Michael D. Smith,et al.  Thermal tides and stationary waves on Mars as revealed by Mars Global Surveyor thermal emission spectrometer , 2000 .

[28]  H. Houben Assimilation of Mars Global Surveyor meteorological data , 1999 .

[29]  J W Head,et al.  Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter. , 1998, Science.

[30]  R. Haberle,et al.  Mars Atmospheric Dynamics , 1998 .

[31]  David A. Paige,et al.  Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region , 1994 .

[32]  Barney J. Conrath,et al.  Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971 , 1975 .

[33]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[34]  H. Davies,et al.  Updating prediction models by dynamical relaxation - An examination of the technique. [for numerical weather forecasting] , 1977 .

[35]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[36]  Assimilation of Mars Global Surveyor atmospheric temperature data into a general circulation model , 2001 .

[37]  Stephen R. Lewis,et al.  Modeling the Martian dust cycle, 1. Representations of dust transport processes , 2002 .