Effect of microfibril twisting on theoretical powder diffraction patterns of cellulose Iβ

[1]  R. Woods,et al.  Unraveling cellulose microfibrils: a twisted tale. , 2013, Biopolymers.

[2]  R. Lipowsky,et al.  Mechanical compressibility of the glycosylphosphatidylinositol (GPI) anchor backbone governed by independent glycosidic linkages. , 2012, Journal of the American Chemical Society.

[3]  Jeremy C. Smith,et al.  REACH coarse-grained simulation of a cellulose fiber. , 2012, Biomacromolecules.

[4]  M. Himmel,et al.  Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields. , 2012, Journal of chemical theory and computation.

[5]  G. P. Johnson,et al.  Diffraction from nonperiodic models of cellulose crystals , 2012, Cellulose.

[6]  Ilpo Vattulainen,et al.  Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. , 2011, The journal of physical chemistry. B.

[7]  M. Himmel,et al.  High-temperature behavior of cellulose I. , 2011, The journal of physical chemistry. B.

[8]  Christopher H. Chang,et al.  The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. , 2009, The journal of physical chemistry. B.

[9]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[10]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[11]  D. van der Spoel,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[12]  T. Yui,et al.  Swelling behavior of the cellulose Ibeta crystal models by molecular dynamics. , 2006, Carbohydrate research.

[13]  M. Himmel,et al.  Computer simulation studies of microcrystalline cellulose Iβ , 2006 .

[14]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[15]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[16]  M. Tsuji,et al.  Helical sense of ribbon assemblies and splayed microfibrils of bacterial cellulose , 1998 .

[17]  D. Gray,et al.  Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist , 1997, Cellulose.

[18]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[19]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[20]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[21]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .