Telomeres: the beginnings and ends of eukaryotic chromosomes.

[1]  David McHugh,et al.  Genetics in Medicine : Official Journal of the American College of Medical Genetics , 2011 .

[2]  S. Savage,et al.  The genetics and clinical manifestations of telomere biology disorders , 2010, Genetics in Medicine.

[3]  J. Lingner,et al.  TERRA biogenesis, turnover and implications for function , 2010, FEBS letters.

[4]  M. Beilstein,et al.  Evolution of CST function in telomere maintenance , 2010, Cell Cycle.

[5]  G. Lucchini,et al.  Multiple pathways regulate 3' overhang generation at S. cerevisiae telomeres. , 2009, Molecular cell.

[6]  C. Schildkraut,et al.  Mammalian Telomeres Resemble Fragile Sites and Require TRF1 for Efficient Replication , 2009, Cell.

[7]  F. Ishikawa,et al.  Fission Yeast Pot1-Tpp1 Protects Telomeres and Regulates Telomere Length , 2008, Science.

[8]  T. Lange,et al.  Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1 , 2007, Nature.

[9]  V. Lundblad,et al.  RPA-like proteins mediate yeast telomere function , 2007, Nature Structural &Molecular Biology.

[10]  V. Zakian,et al.  Telomere Position Effect : Silencing Near the End , 2007 .

[11]  K. Miller,et al.  Semi-conservative DNA replication through telomeres requires Taz1 , 2006, Nature.

[12]  V. Zakian,et al.  10 Telomere Position Effect: Silencing Near the End , 2006 .

[13]  S. Marcand,et al.  Rap1 prevents telomere fusions by nonhomologous end joining , 2005, The EMBO journal.

[14]  T. de Lange,et al.  Shelterin: the protein complex that shapes and safeguards human telomeres. , 2005, Genes & development.

[15]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[16]  Peter Sperisen,et al.  Telomere Length Homeostasis Is Achieved via a Switch between Telomerase- Extendible and -Nonextendible States , 2004, Cell.

[17]  Lara K. Goudsouzian,et al.  The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. , 2003, Molecular cell.

[18]  M. Mateyak,et al.  Getting to the end: telomerase access in yeast and humans , 2003, Nature Reviews Molecular Cell Biology.

[19]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[20]  C. Greider,et al.  Short telomeres induce a DNA damage response in Saccharomyces cerevisiae. , 2003, Molecular biology of the cell.

[21]  J. Berman,et al.  MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae. , 2002, Molecular biology of the cell.

[22]  Jin-Qiu Zhou,et al.  Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. , 2002, Genes & development.

[23]  Margaret A. Strong,et al.  The Shortest Telomere, Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability , 2001, Cell.

[24]  J. Shay,et al.  Telomere Position Effect in Human Cells , 2001, Science.

[25]  P. Baumann,et al.  Pot1, the Putative Telomere End-Binding Protein in Fission Yeast and Humans , 2001, Science.

[26]  D. Broccoli,et al.  p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. , 1999, Science.

[27]  J. Langmore,et al.  Long G Tails at Both Ends of Human Chromosomes Suggest a C Strand Degradation Mechanism for Telomere Shortening , 1997, Cell.

[28]  R. Wellinger,et al.  Evidence for a New Step in Telomere Maintenance , 1996, Cell.

[29]  M. Yao Programmed DNA deletions in Tetrahymena: mechanisms and implications. , 1996, Trends in genetics : TIG.

[30]  L. Hartwell,et al.  Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint , 1995, Molecular and cellular biology.

[31]  T. Cech,et al.  Telomerase and DNA end replication: no longer a lagging strand problem? , 1995, Science.

[32]  J. Gall 1 Beginning of the End: Origins of the Telomere Concept , 1995 .

[33]  C B Harley,et al.  Specific association of human telomerase activity with immortal cells and cancer. , 1994, Science.

[34]  D. Gottschling,et al.  TLC1: template RNA component of Saccharomyces cerevisiae telomerase. , 1994, Science.

[35]  Virginia A. Zakian,et al.  Loss of a yeast telomere: Arrest, recovery, and chromosome loss , 1993, Cell.

[36]  R. Wellinger,et al.  Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid , 1993, Molecular and cellular biology.

[37]  R. Wellinger,et al.  Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase , 1993, Cell.

[38]  C. Greider Telomerase is processive , 1991, Molecular and cellular biology.

[39]  Barbara L. Billington,et al.  Position effect at S. cerevisiae telomeres: Reversible repression of Pol II transcription , 1990, Cell.

[40]  C. Harley,et al.  Telomeres shorten during ageing of human fibroblasts , 1990, Nature.

[41]  E. Blackburn,et al.  In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs , 1990, Nature.

[42]  E. Blackburn,et al.  A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis , 1989, Nature.

[43]  Carol W. Greider,et al.  The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity , 1987, Cell.

[44]  D. Gottschling,et al.  Telomere proteins: Specific recognition and protection of the natural termini of Oxytricha macronuclear DNA , 1986, Cell.

[45]  Carol W. Greider,et al.  Identification of a specific telomere terminal transferase activity in tetrahymena extracts , 1985, Cell.

[46]  V. Zakian,et al.  Elaboration of telomeres in yeast: recognition and modification of termini from Oxytricha macronuclear DNA. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Jack W. Szostak,et al.  Cloning yeast telomeres on linear plasmid vectors , 1982, Cell.

[48]  D. Prescott,et al.  All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3' terminus. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[49]  E. Blackburn,et al.  A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. , 1978, Journal of molecular biology.

[50]  J. D. Watson Origin of Concatemeric T7DNA , 1972 .