Hunting and Gathering - Verifiable Random Functions from Standard Assumptions with Short Proofs

A verifiable random function (VRF) is a pseudorandom function, where outputs can be publicly verified. That is, given an output value together with a proof, one can check that the function was indeed correctly evaluated on the corresponding input. At the same time, the output of the function is computationally indistinguishable from random for all non-queried inputs.

[1]  Amit Sahai,et al.  A note on VRFs from Verifiable Functional Encryption , 2017, IACR Cryptol. ePrint Arch..

[2]  Yevgeniy Dodis,et al.  A Verifiable Random Function with Short Proofs and Keys , 2005, Public Key Cryptography.

[3]  Dan Boneh,et al.  Algebraic pseudorandom functions with improved efficiency from the augmented cascade , 2010, CCS '10.

[4]  Shuichi Katsumata,et al.  On the Untapped Potential of Encoding Predicates by Arithmetic Circuits and Their Applications , 2017, ASIACRYPT.

[5]  Brent Waters,et al.  Efficient Identity-Based Encryption Without Random Oracles , 2005, EUROCRYPT.

[6]  Kenneth G. Paterson,et al.  Programmable Hash Functions in the Multilinear Setting , 2013, CRYPTO.

[7]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .

[8]  Anna Lysyanskaya,et al.  Unique Signatures and Verifiable Random Functions from the DH-DDH Separation , 2002, CRYPTO.

[9]  Lane A. Hemaspaandra,et al.  SIGACT news complexity theory column 61 , 2008, SIGA.

[10]  Shota Yamada,et al.  Asymptotically Compact Adaptively Secure Lattice IBEs and Verifiable Random Functions via Generalized Partitioning Techniques , 2017, CRYPTO.

[11]  Brent Waters,et al.  Constructing Verifiable Random Functions with Large Input Spaces , 2010, EUROCRYPT.

[12]  Oded Goldreich,et al.  Definitions and properties of zero-knowledge proof systems , 1994, Journal of Cryptology.

[13]  Oded Goldreich,et al.  Computational complexity - a conceptual perspective , 2008 .

[14]  Razvan Rosie,et al.  Adaptive-Secure VRFs with Shorter Keys from Static Assumptions , 2018, IACR Cryptol. ePrint Arch..

[15]  Brent Waters,et al.  A Generic Approach to Constructing and Proving Verifiable Random Functions , 2017, TCC.

[16]  Tibor Jager,et al.  Verifiable Random Functions from Weaker Assumptions , 2015, TCC.

[17]  Markulf Kohlweiss,et al.  Compact E-Cash and Simulatable VRFs Revisited , 2009, Pairing.

[18]  Dario Fiore,et al.  Verifiable Random Functions: Relations to Identity-Based Key Encapsulation and New Constructions , 2013, Journal of Cryptology.

[19]  Tibor Jager,et al.  Verifiable Random Functions from Standard Assumptions , 2016, TCC.

[20]  Dario Fiore,et al.  Verifiable Random Functions from Identity-Based Key Encapsulation , 2009, EUROCRYPT.

[21]  Yi Mu,et al.  Practical Compact E-Cash , 2007, IACR Cryptol. ePrint Arch..

[22]  Rafail Ostrovsky,et al.  New Techniques for Noninteractive Zero-Knowledge , 2012, JACM.

[23]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[24]  Dan Boneh,et al.  Secure Identity Based Encryption Without Random Oracles , 2004, CRYPTO.

[25]  Moses D. Liskov Updatable Zero-Knowledge Databases , 2005, ASIACRYPT.

[26]  Moni Naor,et al.  Number-theoretic constructions of efficient pseudo-random functions , 2004, JACM.

[27]  Silvio Micali,et al.  Micropayments Revisited , 2002, CT-RSA.

[28]  Dario Fiore,et al.  From Selective to Full Security: Semi-Generic Transformations in the Standard Model , 2012, IACR Cryptol. ePrint Arch..

[29]  David Cash,et al.  Bonsai Trees, or How to Delegate a Lattice Basis , 2010, EUROCRYPT.

[30]  Silvio Micali,et al.  Verifiable random functions , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[31]  Silvio Micali,et al.  Soundness in the Public-Key Model , 2001, CRYPTO.

[32]  Vitaly Shmatikov,et al.  Handcuffing Big Brother: an Abuse-Resilient Transaction Escrow Scheme , 2004, EUROCRYPT.

[33]  Yevgeniy Dodis,et al.  Efficient Construction of (Distributed) Verifiable Random Functions , 2003, Public Key Cryptography.