Ranking the Linked Data: The Case of DBpedia

The recent proliferation of crowd computing initiatives on the web calls for smarter methodologies and tools to annotate, query and explore repositories. There is the need for scalable techniques able to return also approximate results with respect to a given query as a ranked set of promising alternatives. In this paper we concentrate on annotation and retrieval of software components, exploiting semantic tagging relying on Linked Open Data. We focus on DBpedia and propose a new hybrid methodology to rank resources exploiting: (i) the graphbased nature of the underlying RDF structure, (ii) context independent semantic relations in the graph and (iii) external information sources such as classical search engine results and social tagging systems. We compare our approach with other RDF similarity measures, proving the validity of our algorithm with an extensive evaluation involving real users.

[1]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[2]  Timothy W. Finin,et al.  Swoogle: a search and metadata engine for the semantic web , 2004, CIKM '04.

[3]  Gerhard Weikum,et al.  NAGA: Searching and Ranking Knowledge , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  Aidan Hogan,et al.  ReConRank: A Scalable Ranking Method for Semantic Web Data with Context , 2006 .

[6]  Sougata Mukherjea,et al.  Information retrieval and knowledge discovery utilizing a biomedical patent semantic Web , 2005, IEEE Transactions on Knowledge and Data Engineering.

[7]  Steffen Staab,et al.  TripleRank: Ranking Semantic Web Data by Tensor Decomposition , 2009, SEMWEB.

[8]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[9]  Abraham Bernstein,et al.  The Semantic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings , 2009, SEMWEB.

[10]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[11]  S. Decker,et al.  Using Naming Authority to Rank Data and Ontologies for Web Search , 2009, SEMWEB.

[12]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[13]  Eyal Oren,et al.  Sindice.com: Weaving the Open Linked Data , 2007, ISWC/ASWC.

[14]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.