DBU-catalyzed three-component one-pot synthesis of highly functionalized pyridines in aqueous ethanol

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) efficiently catalyzes three-component one-pot condensations of aldehyde, malononitrile, and thiophenol to produce highly functionalized pyridines in excellent yield in aqueous ethanol. J. Heterocyclic Chem., 46, 69 (2009).

[1]  Shabana I. Khan,et al.  Synthesis, thermal stability, antimalarial activity of symmetrically and asymmetrically substituted tetraoxanes. , 2008, Bioorganic & medicinal chemistry letters.

[2]  M. Thompson,et al.  Mechanistic studies leading to a new procedure for rapid, microwave assisted generation of pyridine-3,5-dicarbonitrile libraries , 2007 .

[3]  D. Rawat,et al.  Syntheses and antibacterial activity of phendioxy substituted cyclic enediynes. , 2007, Bioorganic & medicinal chemistry letters.

[4]  A. Kornienko,et al.  One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. , 2007, The Journal of organic chemistry.

[5]  B. Ranu,et al.  An improved procedure for the three-component synthesis of highly substituted pyridines using ionic liquid. , 2007, The Journal of organic chemistry.

[6]  M. J. Kim,et al.  1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU)-promoted efficient and versatile aza-Michael addition , 2007 .

[7]  C. Jarry,et al.  Synthesis of Omeprazole Analogues and Evaluation of These as Potential Inhibitors of the Multidrug Efflux Pump NorA of Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[8]  A. Wells,et al.  On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids , 2006 .

[9]  Timothy E. Hurst,et al.  Synthesis of highly-functionalised pyridines via hetero-Diels–Alder methodology: reaction of 3-siloxy-1-aza-1,3-butadienes with electron deficient acetylenes , 2006 .

[10]  M. D. Hill,et al.  Synthesis of substituted pyridine derivatives via the ruthenium-catalyzed cycloisomerization of 3-azadienynes. , 2006, Journal of the American Chemical Society.

[11]  Zhaofu Fei,et al.  From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. , 2006, Chemistry.

[12]  A. Kornienko,et al.  One-step, three-component synthesis of pyridines and 1,4-dihydropyridines with manifold medicinal utility. , 2006, Organic letters.

[13]  V. Gillet,et al.  Library design, synthesis, and screening: pyridine dicarbonitriles as potential prion disease therapeutics. , 2006, Journal of medicinal chemistry.

[14]  V. Onnis,et al.  Synthesis and antiproliferative activity of 2,6-dibenzylamino-3,5-dicyanopyridines on human cancer cell lines. , 2005, European journal of medicinal chemistry.

[15]  R. Shunmugam,et al.  Incorporation of terpyridine into the side chain of copolymers to create multi-functional materials , 2005 .

[16]  A. IJzerman,et al.  A series of ligands displaying a remarkable agonistic-antagonistic profile at the adenosine A1 receptor. , 2005, Journal of medicinal chemistry.

[17]  D. Gang,et al.  The Lycopodium alkaloids. , 2004, Natural product reports.

[18]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[19]  A. IJzerman,et al.  New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. , 2004, Journal of medicinal chemistry.

[20]  A. M. Attia,et al.  An approach to acyclo-3-deazapyrimidine S-nucleosides via 3,5-dicyano-2(1H)-pyridinethiones , 2003 .

[21]  C. V. Asokan,et al.  Vilsmeier–Haack reactions of α-hydroxyketenedithioacetals: a facile synthesis of substituted pyridines , 2002 .

[22]  Oljan Repic,et al.  Nucleophilic catalysis with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) for the esterification of carboxylic acids with dimethyl carbonate. , 2002, The Journal of organic chemistry.

[23]  S. Katsumura,et al.  Significant acceleration of 6 pi-azaelectrocyclization resulting from a remarkable substituent effect and formal synthesis of the ocular age pigment A2-E by a new method for substituted pyridine synthesis. , 2001, The Journal of organic chemistry.

[24]  S. Ferguson,et al.  Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. , 2001, Pharmacological reviews.

[25]  Jae Nyeong Kim,et al.  Nucleophilic Behaviour of DBU and DBN toward Acetylated Baylis-Hillman Adducts , 2001 .

[26]  F. Cohen,et al.  Mimicking dominant negative inhibition of prion replication through structure-based drug design. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Renslo,et al.  Synthesis of Substituted Pyridines via Regiocontrolled [4 + 2] Cycloadditions of Oximinosulfonates , 1998 .

[28]  S. Mashraqui,et al.  Catalytic oxidation of Hantzsch 1,4-dihydropyridines by RuCl3 under oxygen atmosphere , 1998 .

[29]  J. K. Sutherland Reaction of 1,8-diazabicyclo[5.4.0]undec-8-ene with methyl3,5-dinitrobenzoate and 1,3,5-trinitrobenzene , 1997 .

[30]  Shahadat Ahmed,et al.  An efficient conversion of conjugated oximes into substituted pyridines under Vilsmeier conditions , 1996 .

[31]  D. Boger,et al.  A general solution to implementing the 4.pi. participation of 1-aza-1,3-butadienes in Diels-Alder reactions: inverse electron demand Diels-Alder reactions of .alpha..beta.-unsaturated N-benzenesulfonyl imines , 1989 .

[32]  Y. Ohshiro,et al.  A New Route to Pyridine Derivatives: Reaction of N‐Methylene‐tert‐butylamine with Enamine , 1982 .

[33]  H. Midorikawa,et al.  Synthetic Studies Using α,β-Unsaturated Nitriles: Facile Synthesis of Pyridine Derivatives , 1981 .

[34]  K. Eiter,et al.  Bicyclic Amidines as Reagents in Organic Syntheses , 1972 .