On Classes of Regular Languages Related to Monotone WQOs

We study relationships of monotone well quasiorders to regular languages and \(\omega \)-languages, concentrating on decidability of the lattices of upper sets on words and infinite words. We establish rather general sufficient conditions for decidability. Applying these conditions to concrete natural monotone WQOs, we obtain new decidability results and new proofs of some known results.

[1]  R. Rado Partial well-ordering of sets of vectors , 1954 .

[2]  Alberto Marcone,et al.  Foundations of BQO theory , 1994 .

[3]  Christian Glaßer,et al.  Efficient algorithms for membership in boolean hierarchies of regular languages , 2016, Theor. Comput. Sci..

[4]  Alberto Marcone Fine Analysis of the Quasi-Orderings on the Power Set , 2001, Order.

[5]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[6]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[7]  David Haussler,et al.  On Regularity of Context-Free Languages , 1983, Theor. Comput. Sci..

[8]  Jean-Éric Pin Positive Varieties and Infinite Words , 1998, LATIN.

[9]  Igor Kříž,et al.  Ordinal Types in Ramsey Theory and Well-Partial-Ordering Theory , 1990 .

[10]  Christian Glaßer,et al.  The Boolean Structure of Dot-Depth One , 2001, J. Autom. Lang. Comb..

[11]  Victor L. Selivanov,et al.  Hierarchies and reducibilities on regular languages related to modulo counting , 2009, RAIRO Theor. Informatics Appl..

[12]  Victor L. Selivanov A Logical Approach to Decidability of Hierarchies of Regular Star-Free Languages , 2001, STACS.

[13]  Mizuhito Ogawa Well-quasi-orders and regular omega-languages , 2004, Theor. Comput. Sci..

[14]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[15]  Anna Papst Finiteness And Regularity In Semigroups And Formal Languages , 2016 .

[16]  Christian Glaßer,et al.  Efficient algorithms for membership in boolean hierarchies of regular languages , 2008, Theor. Comput. Sci..

[17]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[18]  C. St. J. A. Nash-Williams,et al.  On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.