A Study on Document Retrieval System Based on Visualization to Manage OCR Documents
暂无分享,去创建一个
Tomohiro Yoshikawa | Takeshi Furuhashi | Kazuki Tamura | T. Furuhashi | T. Yoshikawa | Kazuki Tamura
[1] Masaaki Nagata. Japanese OCR Error Correction using Character Shape Similarity and Statistical Language Model , 1998, COLING-ACL.
[2] D. Newman,et al. Probabilistic topic decomposition of an eighteenth-century American newspaper , 2006 .
[3] Peter A. Chew,et al. Term Weighting Schemes for Latent Dirichlet Allocation , 2010, NAACL.
[4] W. Bruce Croft,et al. LDA-based document models for ad-hoc retrieval , 2006, SIGIR.
[5] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[6] Hermann Ney,et al. Improved Alignment Models for Statistical Machine Translation , 1999, EMNLP.
[7] Jianhua Lin,et al. Divergence measures based on the Shannon entropy , 1991, IEEE Trans. Inf. Theory.
[8] Naonori Ueda,et al. Probabilistic latent semantic visualization: topic model for visualizing documents , 2008, KDD.
[9] Eric K. Ringger,et al. Evaluating Models of Latent Document Semantics in the Presence of OCR Errors , 2010, EMNLP.
[10] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[11] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .
[12] Gregor Heinrich. Parameter estimation for text analysis , 2009 .
[13] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[14] Horst Bunke,et al. Recognition of cursive Roman handwriting: past, present and future , 2003, Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings..
[15] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.