The two-loop energy–momentum tensor within the gradient-flow formalism

[1]  M. Kitazawa,et al.  Stress-Tensor Distribution in Yang-Mills Flux Tube: Direct Observation on the Lattice with Gradient Flow , 2018 .

[2]  Peter Uwer,et al.  Kira - A Feynman integral reduction program , 2017, Comput. Phys. Commun..

[3]  Matthias Steinhauser,et al.  Version 3 of RunDec and CRunDec , 2017, Comput. Phys. Commun..

[4]  M. Kitazawa,et al.  Correlations of the energy-momentum tensor via gradient flow in SU(3) Yang-Mills theory at finite temperature , 2017, 1708.01415.

[5]  M. Luscher,et al.  SMD-based numerical stochastic perturbation theory , 2017, The European Physical Journal C.

[6]  K. Kanaya,et al.  Exploring $N_{f}$ = 2+1 QCD thermodynamics from the gradient flow , 2016, 1609.01417.

[7]  J. P. Ellis TikZ-Feynman: Feynman diagrams with TikZ , 2016, Comput. Phys. Commun..

[8]  Hiroshi Suzuki,et al.  Equation of State for SU(3) Gauge Theory via the Energy-Momentum Tensor under Gradient Flow , 2016, 1610.07810.

[9]  T. Neumann,et al.  The perturbative QCD gradient flow to three loops , 2016, 1606.03756.

[10]  Hiroshi Suzuki,et al.  Lattice energy–momentum tensor from the Yang–Mills gradient flow—inclusion of fermion fields , 2014, 1403.4772.

[11]  Hiroshi Suzuki,et al.  Thermodynamics of SU (3) gauge theory from gradient flow on the lattice , 2013, 1312.7492.

[12]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[13]  Hiroshi Suzuki,et al.  Energy-momentum tensor from the Yang-Mills gradient flow , 2013, 1304.0533.

[14]  M. Luscher Chiral symmetry and the Yang--Mills gradient flow , 2013, 1302.5246.

[15]  Takahiro Ueda,et al.  FORM version 4.0 , 2012, Comput. Phys. Commun..

[16]  Tobias Huber,et al.  HypExp 2, Expanding hypergeometric functions about half-integer parameters , 2007, Comput. Phys. Commun..

[17]  Martin Lüscher,et al.  Perturbative analysis of the gradient flow in non-abelian gauge theories , 2011, 1101.0963.

[18]  Martin Lüscher,et al.  Properties and uses of the Wilson flow in lattice QCD , 2010 .

[19]  M. Luscher Properties and uses of the Wilson flow in lattice QCD , 2010, 1006.4518.

[20]  T. Huber,et al.  HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2005, Comput. Phys. Commun..

[21]  T. Binoth,et al.  Numerical evaluation of multi-loop integrals by sector decomposition , 2003, hep-ph/0305234.

[22]  S. Laporta,et al.  HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.

[23]  J. Kuhn,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000, hep-ph/0004189.

[24]  T. Seidensticker Automatic application of successive asymptotic expansions of Feynman diagrams , 1999, hep-ph/9905298.

[25]  M. Steinhauser,et al.  Complete Corrections of O ( αα s ) to the Decay of the Z Boson into Bottom Quarks , 1997 .

[26]  P. Nogueira Automatic Feynman graph generation , 1993 .

[27]  S. A. Larin,et al.  Coefficient functions of asymptotic operator expansions in the minimal subtraction scheme , 1987 .

[28]  A. Genz,et al.  An Imbedded Family of Fully Symmetric Numerical Integration Rules , 1983 .

[29]  F. Tkachov,et al.  THE ALGORITHM FOR OPE COEFFICIENT FUNCTIONS IN THE MS SCHEME , 1983 .