The two-loop energy–momentum tensor within the gradient-flow formalism
暂无分享,去创建一个
[1] M. Kitazawa,et al. Stress-Tensor Distribution in Yang-Mills Flux Tube: Direct Observation on the Lattice with Gradient Flow , 2018 .
[2] Peter Uwer,et al. Kira - A Feynman integral reduction program , 2017, Comput. Phys. Commun..
[3] Matthias Steinhauser,et al. Version 3 of RunDec and CRunDec , 2017, Comput. Phys. Commun..
[4] M. Kitazawa,et al. Correlations of the energy-momentum tensor via gradient flow in SU(3) Yang-Mills theory at finite temperature , 2017, 1708.01415.
[5] M. Luscher,et al. SMD-based numerical stochastic perturbation theory , 2017, The European Physical Journal C.
[6] K. Kanaya,et al. Exploring $N_{f}$ = 2+1 QCD thermodynamics from the gradient flow , 2016, 1609.01417.
[7] J. P. Ellis. TikZ-Feynman: Feynman diagrams with TikZ , 2016, Comput. Phys. Commun..
[8] Hiroshi Suzuki,et al. Equation of State for SU(3) Gauge Theory via the Energy-Momentum Tensor under Gradient Flow , 2016, 1610.07810.
[9] T. Neumann,et al. The perturbative QCD gradient flow to three loops , 2016, 1606.03756.
[10] Hiroshi Suzuki,et al. Lattice energy–momentum tensor from the Yang–Mills gradient flow—inclusion of fermion fields , 2014, 1403.4772.
[11] Hiroshi Suzuki,et al. Thermodynamics of SU (3) gauge theory from gradient flow on the lattice , 2013, 1312.7492.
[12] A. V. Smirnov,et al. FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..
[13] Hiroshi Suzuki,et al. Energy-momentum tensor from the Yang-Mills gradient flow , 2013, 1304.0533.
[14] M. Luscher. Chiral symmetry and the Yang--Mills gradient flow , 2013, 1302.5246.
[15] Takahiro Ueda,et al. FORM version 4.0 , 2012, Comput. Phys. Commun..
[16] Tobias Huber,et al. HypExp 2, Expanding hypergeometric functions about half-integer parameters , 2007, Comput. Phys. Commun..
[17] Martin Lüscher,et al. Perturbative analysis of the gradient flow in non-abelian gauge theories , 2011, 1101.0963.
[18] Martin Lüscher,et al. Properties and uses of the Wilson flow in lattice QCD , 2010 .
[19] M. Luscher. Properties and uses of the Wilson flow in lattice QCD , 2010, 1006.4518.
[20] T. Huber,et al. HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2005, Comput. Phys. Commun..
[21] T. Binoth,et al. Numerical evaluation of multi-loop integrals by sector decomposition , 2003, hep-ph/0305234.
[22] S. Laporta,et al. HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.
[23] J. Kuhn,et al. RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000, hep-ph/0004189.
[24] T. Seidensticker. Automatic application of successive asymptotic expansions of Feynman diagrams , 1999, hep-ph/9905298.
[25] M. Steinhauser,et al. Complete Corrections of O ( αα s ) to the Decay of the Z Boson into Bottom Quarks , 1997 .
[26] P. Nogueira. Automatic Feynman graph generation , 1993 .
[27] S. A. Larin,et al. Coefficient functions of asymptotic operator expansions in the minimal subtraction scheme , 1987 .
[28] A. Genz,et al. An Imbedded Family of Fully Symmetric Numerical Integration Rules , 1983 .
[29] F. Tkachov,et al. THE ALGORITHM FOR OPE COEFFICIENT FUNCTIONS IN THE MS SCHEME , 1983 .