Compressed Pattern Databases

A pattern database (PDB) is a heuristic function implemented as a lookup table that stores the lengths of optimal solutions for subproblem instances. Standard PDBs have a distinct entry in the table for each subproblem instance. In this paper we investigate compressing PDBs by merging several entries into one, thereby allowing the use of PDBs that exceed available memory in their uncompressed form. We introduce a number of methods for determining which entries to merge and discuss their relative merits. These vary from domain-independent approaches that allow any set of entries in the PDB to be merged, to more intelligent methods that take into account the structure of the problem. The choice of the best compression method is based on domain-dependent attributes. We present experimental results on a number of combinatorial problems, including the four-peg Towers of Hanoi problem, the sliding-tile puzzles, and the Top-Spin puzzle. For the Towers of Hanoi, we show that the search time can be reduced by up to three orders of magnitude by using compressed PDBs compared to uncompressed PDBs of the same size. More modest improvements were observed for the other domains.

[1]  Richard E. Korf,et al.  Best-First Frontier Search with Delayed Duplicate Detection , 2004, AAAI.

[2]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[3]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[4]  Jonathan Schaeffer,et al.  Memory-efficient A* heuristics for multiple sequence alignment , 2002, AAAI/IAAI.

[5]  Jonathan Schaeffer,et al.  Dual Search in Permutation State Spaces , 2006, AAAI.

[6]  Richard E. Korf,et al.  Recent Progress in Heuristic Search: A Case Study of the Four-Peg Towers of Hanoi Problem , 2007, IJCAI.

[7]  Jonathan Schaeffer,et al.  Pattern Databases , 1998, Comput. Intell..

[8]  Nathan R. Sturtevant,et al.  Inconsistent Heuristics , 2007, AAAI.

[9]  Richard E. Korf,et al.  Large-Scale Parallel Breadth-First Search , 2005, AAAI.

[10]  Richard E. Korf,et al.  Finding Optimal Solutions to Rubik's Cube Using Pattern Databases , 1997, AAAI/IAAI.

[11]  S. Schroedl An Improved Search Algorithm for Optimal Multiple-Sequence Alignment , 2005, J. Artif. Intell. Res..

[12]  Richard E. Korf,et al.  Additive Pattern Database Heuristics , 2004, J. Artif. Intell. Res..

[13]  Richard E. Korf,et al.  Compressing Pattern Databases , 2004, AAAI.

[14]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[15]  Richard E. Korf,et al.  Disjoint pattern database heuristics , 2002, Artif. Intell..

[16]  Moti Yung,et al.  Criticizing solutions to relaxed models yields powerful admissible heuristics , 1992, Inf. Sci..

[17]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[18]  Stefan Edelkamp,et al.  Symbolic Pattern Databases in Heuristic Search Planning , 2002, AIPS.

[19]  Jonathan Schaeffer,et al.  Dual Lookups in Pattern Databases , 2005, IJCAI.

[20]  David Furcy,et al.  Maximizing over multiple pattern databases speeds up heuristic search , 2006, Artif. Intell..

[21]  David L. Dill,et al.  Improved probabilistic verification by hash compaction , 1995, CHARME.

[22]  Frank Ruskey,et al.  Ranking and unranking permutations in linear time , 2001, Inf. Process. Lett..

[23]  Eric A. Hansen,et al.  Space-Efficient Memory-Based Heuristics , 2004, AAAI.

[24]  Richard E. Korf Delayed Duplicate Detection: Extended Abstract , 2003, IJCAI.

[25]  Eric A. Hansen,et al.  Breadth-first heuristic search , 2004, Artif. Intell..

[26]  László Méro,et al.  A Heuristic Search Algorithm with Modifiable Estimate , 1984, Artif. Intell..

[27]  Kamesh Munagala,et al.  I/O-complexity of graph algorithms , 1999, SODA '99.

[28]  Steven Skiena,et al.  Sorting with Fixed-length Reversals , 1996, Discret. Appl. Math..

[29]  Stefan Edelkamp,et al.  Externalizing the Multiple Sequence Alignment Problem with Affine Gap Costs , 2007, KI.

[30]  Ariel Felner,et al.  Solving the 24 Puzzle with Instance Dependent Pattern Databases , 2005, SARA.

[31]  Richard E. Korf,et al.  Frontier search , 2005, JACM.