Global urban expansion offsets climate-driven increases in terrestrial net primary productivity

[1]  Syed Muhammad Hassan Raza,et al.  Estimation of Net Rice Production through Improved CASA Model by Addition of Soil Suitability Constant (ħα) , 2018, Sustainability.

[2]  Xiaoping Liu,et al.  High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform , 2018 .

[3]  Fengsong Pei,et al.  Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming , 2018 .

[4]  Changjiang Wu,et al.  Monitoring the vegetation activity in China using vegetation health indices , 2018 .

[5]  Jun Chen,et al.  Analysis and Applications of GlobeLand30: A Review , 2017, ISPRS Int. J. Geo Inf..

[6]  F. Creutzig,et al.  Future urban land expansion and implications for global croplands , 2016, Proceedings of the National Academy of Sciences.

[7]  Shuguang Liu,et al.  Prevalent vegetation growth enhancement in urban environment , 2016, Proceedings of the National Academy of Sciences.

[8]  Jin Chen,et al.  Global land cover mapping at 30 m resolution: A POK-based operational approach , 2015 .

[9]  Erzhu Li,et al.  Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China , 2015, Frontiers of Earth Science.

[10]  Fengsong Pei,et al.  Exploring the response of net primary productivity variations to urban expansion and climate change: a scenario analysis for Guangdong Province in China. , 2015, Journal of environmental management.

[11]  R. Houghton,et al.  Evidence for environmentally enhanced forest growth , 2014, Proceedings of the National Academy of Sciences.

[12]  Jianguo Wu Urban ecology and sustainability: The state-of-the-science and future directions , 2014 .

[13]  D. Lobell,et al.  A meta-analysis of crop yield under climate change and adaptation , 2014 .

[14]  P. Ciais,et al.  Terrestrial carbon cycle affected by non-uniform climate warming , 2014 .

[15]  Shenglu Zhou,et al.  Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China. , 2014, The Science of the total environment.

[16]  Xiaoping Liu,et al.  Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata , 2014, Int. J. Geogr. Inf. Sci..

[17]  V. Brovkin,et al.  Effect of Anthropogenic Land-Use and Land-Cover Changes on Climate and Land Carbon Storage in CMIP5 Projections for the Twenty-First Century , 2013 .

[18]  S. Prince,et al.  NPP Multi-Biome: Global Primary Production Data Initiative Products, R2 , 2013 .

[19]  Compton J. Tucker,et al.  The use of multisource satellite and geospatial data to study the effect of urbanization on primary productivity in the United States , 2013, IEEE Trans. Geosci. Remote. Sens..

[20]  A. Arneth,et al.  Phenology and gross primary production of two dominant savanna woodland ecosystems in Southern Africa , 2013 .

[21]  T. McVicar,et al.  Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments , 2013 .

[22]  Fengsong Pei,et al.  Assessing the differences in net primary productivity between pre- and post-urban land development in China , 2013 .

[23]  Alan S. Cantin,et al.  A comparison of Canadian and Russian boreal forest fire regimes , 2013 .

[24]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[25]  K. Seto,et al.  Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools , 2012, Proceedings of the National Academy of Sciences.

[26]  Benjamin Smith,et al.  Too early to infer a global NPP decline since 2000 , 2012 .

[27]  P. Bartlein,et al.  Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balances , 2012 .

[28]  D. Theobald,et al.  Vegetation productivity consequences of human settlement growth in the eastern United States , 2012, Landscape Ecology.

[29]  Christopher Potter,et al.  Net primary production of terrestrial ecosystems from 2000 to 2009 , 2012, Climatic Change.

[30]  S. Carpenter,et al.  Solutions for a cultivated planet , 2011, Nature.

[31]  A. Samanta,et al.  Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009” , 2011, Science.

[32]  B. Medlyn,et al.  Comment on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009” , 2011, Science.

[33]  K. Seto,et al.  A Meta-Analysis of Global Urban Land Expansion , 2011, PloS one.

[34]  Xia Li,et al.  Coupling Simulation and Optimization to Solve Planning Problems in a Fast-Developing Area , 2011 .

[35]  Markus Brückner,et al.  Economic growth, size of the agricultural sector, and urbanization in Africa , 2011 .

[36]  H. Matthews,et al.  Future CO2 Emissions and Climate Change from Existing Energy Infrastructure , 2010, Science.

[37]  Maosheng Zhao,et al.  Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009 , 2010, Science.

[38]  M. Friedl,et al.  Mapping global urban areas using MODIS 500-m data: new methods and datasets based on 'urban ecoregions'. , 2010 .

[39]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[40]  G. Churkina,et al.  The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution , 2008 .

[41]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[42]  N. Grimm,et al.  Global Change and the Ecology of Cities , 2008, Science.

[43]  M. Heimann,et al.  Terrestrial ecosystem carbon dynamics and climate feedbacks , 2008, Nature.

[44]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[45]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[46]  Z. Wenquan,et al.  Simulation of maximum light use efficiency for some typical vegetation types in China , 2006 .

[47]  R. Lal,et al.  Global Soil Nutrient Depletion and Yield Reduction , 2005 .

[48]  S. Piao,et al.  Changes in vegetation net primary productivity from 1982 to 1999 in China , 2005 .

[49]  Scott J. Goetz,et al.  Remotely Sensed Interannual Variations and Trends in Terrestrial Net Primary Productivity 1981–2000 , 2004, Ecosystems.

[50]  Taylor H. Ricketts,et al.  The consequences of urban land transformation on net primary productivity in the United States , 2004 .

[51]  Benjamin Smith,et al.  Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA , 2004 .

[52]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[53]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[54]  H. R. Sinclair,et al.  Assessing the Impact of Land Conversion to Urban Use on Soils with Different Productivity Levels in the USA , 2001 .

[55]  Patrick Johnson,et al.  BioSARTM: an inexpensive airborne VHF multiband SAR system for vegetation biomass measurement , 2000, IEEE Trans. Geosci. Remote. Sens..

[56]  R. Lal Soil Quality and Agricultural Sustainability , 1998 .

[57]  Pieter P. Tans,et al.  Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record , 1995 .

[58]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[59]  J. Randerson,et al.  Terrestrial ecosystem production: A process model based on global satellite and surface data , 1993 .

[60]  B. H. Janssen,et al.  Calculating soil nutrient balances in Africa at different scales , 1993, Fertilizer research.

[61]  J. Monteith SOLAR RADIATION AND PRODUCTIVITY IN TROPICAL ECOSYSTEMS , 1972 .

[62]  R. C. Macridis A review , 1963 .

[63]  R. Myneni,et al.  Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation , 2016 .

[64]  J. Stoorvogel,et al.  Calculating soil nutrient balances in Africa at different scales , 2004, Fertilizer research.

[65]  Cristina Milesi,et al.  User's Guide GPP and NPP (MOD17A2/A3) Products NASA MODIS Land Algorithm , 2003 .

[66]  C. Elvidge,et al.  Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the United States , 1997 .

[67]  Peter Ramge,et al.  Net primary production of terrestrial ecosystems as evaluated by the Frankfurt biosphere model (FBM). / Productivité primaire nette des écosystèmes terrestres selon le «Frankfurt Biosphere Model » (FBM) , 1997 .

[68]  J. Randerson,et al.  Global net primary production: Combining ecology and remote sensing , 1995 .