Critical behavior of the nonperturbative stabilization of 2D quantum gravity

[1]  J. Ambjorn,et al.  Non-perturbative calculation of correlators in 2D quantum gravity , 1991 .

[2]  M. Vozmediano,et al.  A quantum mechanical framework for pure two-dimensional gravity , 1991 .

[3]  M. Karliner,et al.  NONPERTURBATIVE 2D QUANTUM GRAVITY VIA SUPERSYMMETRIC STRING , 1990 .

[4]  J. Ambjorn,et al.  A non-perturbative definition of 2D quantum gravity by the fifth time action , 1990 .

[5]  S. Shenker,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[6]  G. Parisi,et al.  The Supersymmetric One-dimensional String , 1990 .

[7]  É. Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[8]  Gross,et al.  Nonperturbative solution of the Ising model on a random surface. , 1990, Physical review letters.

[9]  V. Kazakov The Appearance of Matter Fields from Quantum Fluctuations of 2D Gravity , 1989 .

[10]  J. Distler,et al.  Conformal Field Theory and 2D Quantum Gravity , 1989 .

[11]  Alexander M. Polyakov,et al.  Fractal Structure of 2D Quantum Gravity , 1988 .

[12]  F. David CONFORMAL FIELD THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE , 1988 .

[13]  A. Migdal,et al.  Analytical and numerical study of a model of dynamically triangulated random surfaces , 1986 .

[14]  F. David,et al.  Scaling Properties of Randomly Triangulated Planar Random Surfaces: A Numerical Study , 1986 .

[15]  J. Fröhlich,et al.  The appearance of critical dimensions in regulated string theories , 1986 .

[16]  M. B. Halpern,et al.  Supersymmetric ground state wave functions , 1985 .

[17]  M. B. Halpern,et al.  Stabilizing bottomless action theories , 1984 .

[18]  Edward Witten,et al.  Dynamical Breaking of Supersymmetry , 1981 .