Experimental learning of quantum states

A photonic system is used to demonstrate that quantum states can be approximately learned using a linear number of measurements. The number of parameters describing a quantum state is well known to grow exponentially with the number of particles. This scaling limits our ability to characterize and simulate the evolution of arbitrary states to systems, with no more than a few qubits. However, from a computational learning theory perspective, it can be shown that quantum states can be approximately learned using a number of measurements growing linearly with the number of qubits. Here, we experimentally demonstrate this linear scaling in optical systems with up to 6 qubits. Our results highlight the power of the computational learning theory to investigate quantum information, provide the first experimental demonstration that quantum states can be “probably approximately learned” with access to a number of copies of the state that scales linearly with the number of qubits, and pave the way to probing quantum states at new, larger scales.

[1]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[2]  Jian-Wei Pan,et al.  Experimental demonstration of a hyper-entangled ten-qubit Schr\ , 2008, 0809.4277.

[3]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[4]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[5]  Robert W. Boyd,et al.  Tomography of the quantum state of photons entangled in high dimensions , 2011 .

[6]  Fabio Sciarrino,et al.  Experimental investigation on the geometry of GHZ states , 2017, Scientific Reports.

[7]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[8]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  Igor Aleksander,et al.  The Classical Perspective , 2003 .

[10]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[11]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[12]  Ebrahim Karimi,et al.  Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications , 2011 .

[13]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[14]  Simone Severini,et al.  Experimental learning of quantum states , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[15]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[16]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[17]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[19]  Philip Walther,et al.  Experimental entangled entanglement. , 2006, Physical review letters.

[20]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[21]  Andrew Chi-Chih Yao,et al.  Self testing quantum apparatus , 2004, Quantum Inf. Comput..

[22]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[23]  A. Lvovsky,et al.  Continuous-variable optical quantum-state tomography , 2009 .

[24]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[25]  D. Gross,et al.  Focus on quantum tomography , 2013 .

[26]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[27]  Scott Aaronson,et al.  Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..

[28]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[29]  Fabio Sciarrino,et al.  Path-polarization hyperentangled and cluster states of photons on a chip , 2016, Light: Science & Applications.

[30]  Ebrahim Karimi,et al.  Quantum information transfer from spin to orbital angular momentum of photons. , 2008, Physical review letters.

[31]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[32]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[33]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[34]  Andrea Rocchetto,et al.  Stabiliser states are efficiently PAC-learnable , 2017, Quantum Inf. Comput..

[35]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[36]  Elad Hazan,et al.  Sparse Approximate Solutions to Semidefinite Programs , 2008, LATIN.

[37]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[38]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[39]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[40]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[41]  Enrico Santamato,et al.  Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate , 2010, 1010.4473.

[42]  Guang-Can Guo,et al.  Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. , 2011, Nature communications.

[43]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[44]  Andrea Coladangelo,et al.  Self-testing multipartite entangled states through projections onto two systems , 2017, New Journal of Physics.

[45]  Maarten Van Den Nes Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly beyond , 2010 .

[46]  Maarten Van den Nest,et al.  Classical simulation of quantum computation, the gottesman-Knill theorem, and slightly beyond , 2008, Quantum Inf. Comput..

[47]  Chiara Vitelli,et al.  Entangled vector vortex beams , 2016 .

[48]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[49]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Philip M. Long,et al.  Fat-shattering and the learnability of real-valued functions , 1994, COLT '94.