Genetics of erythropoiesis: induced mutations in mice and zebrafish.

Production of red blood cells (erythropoiesis) in the vertebrate embryo is critical to its survival and subsequent development. As red cells are the first blood cells to appear in embryogenesis, their origin reflects commitment of mesoderm to an hematopoietic fate and provides an avenue by which to examine the development of the hematopoietic system, including the hematopoietic stem cell (HSC). We discuss the genetics of erythropoiesis as studied in two systems: the mouse and zebrafish (Danio rerio). In the mouse, targeted disruption has established several genes as essential at different stages of hematopoiesis or erythroid precursor cell maturation. In the zebrafish, numerous mutants displaying a wide range of phenotypes have been isolated, although the affected genes are unknown. In comparing mouse knockout and zebrafish mutant phenotypes, we propose a pathway for erythropoiesis that emphasizes the apparent similarity of the mutants and the complementary nature of investigation in the two species. We speculate that further genetic studies in mouse and zebrafish will identify the majority of essential genes and define a regulatory network for hematopoiesis in vertebrates.

[1]  F. Collins,et al.  Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. , 1993, Science.

[2]  Y. Kunz,et al.  ONTOGENESIS OF HAEMATOPOIETIC SITES IN BRACHYDANIO RERIO (HAMILTON‐BUCHANAN) (TELEOSTEI) * , 1977, Development, growth & differentiation.

[3]  Nancy Hopkins,et al.  Insertional mutagenesis and rapid cloning of essential genes in zebrafish , 1996, Nature.

[4]  J. Rossant,et al.  flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. , 1993, Development.

[5]  L. Zon,et al.  Activation of the erythropoietin receptor promoter by transcription factor GATA-1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Orkin,et al.  DNA-binding specificity of GATA family transcription factors , 1993, Molecular and cellular biology.

[7]  G. Felsenfeld,et al.  The erythroid-specific transcription factor eryf1: A new finger protein , 1989, Cell.

[8]  F. Grosveld,et al.  Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene , 1995, Nature.

[9]  H. Hsu,et al.  Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins , 1991, Molecular and cellular biology.

[10]  S. Orkin,et al.  Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. , 1992, The Journal of biological chemistry.

[11]  M. Siciliano,et al.  Site‐specific recombination of the tal‐1 gene is a common occurrence in human T cell leukemia. , 1990, The EMBO journal.

[12]  M. Capecchi,et al.  Altering the genome by homologous recombination. , 1989, Science.

[13]  L. Zon,et al.  Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Speck,et al.  Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor , 1993, Molecular and cellular biology.

[15]  J. Bieker,et al.  Analyses of beta-thalassemia mutant DNA interactions with erythroid Krüppel-like factor (EKLF), an erythroid cell-specific transcription factor. , 1994, The Journal of biological chemistry.

[16]  S. Orkin,et al.  Development of hematopoietic cells lacking transcription factor GATA-1. , 1995, Development.

[17]  S. Orkin,et al.  Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the erythroid transcription factor GATA-1. , 1994, The Journal of biological chemistry.

[18]  M. Perutz,et al.  The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Green,et al.  Erythroid expression of the 'helix-loop-helix' gene, SCL. , 1991, Oncogene.

[20]  S. Orkin,et al.  Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. , 1997, Blood.

[21]  Y. Ito,et al.  PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. J. Breen,et al.  Interactions of the LIM-domain-binding factor Ldbl with LIM homeodomain proteins , 1996, Nature.

[23]  E. Olson,et al.  bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. , 1994, Genes & development.

[24]  J. Li,et al.  The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Marín‐Padilla,et al.  Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[27]  S. Orkin,et al.  Lethal β-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF , 1995, Nature.

[28]  N. Oppenheimer-Marks,et al.  Expression of the TAL1 proto-oncogene in cultured endothelial cells and blood vessels of the spleen. , 1993, Oncogene.

[29]  S. Orkin,et al.  A Functional Initiator Element in the Human β-Globin Promoter (*) , 1995, The Journal of Biological Chemistry.

[30]  A. Schier,et al.  Hematopoietic mutations in the zebrafish. , 1996, Development.

[31]  David J. Anderson,et al.  Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons , 1993, Cell.

[32]  R. Bronson,et al.  Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Orkin,et al.  The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Orkin,et al.  Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.

[35]  S. Orkin,et al.  The SCL gene product: a positive regulator of erythroid differentiation. , 1992, The EMBO journal.

[36]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[37]  H. Lodish,et al.  Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Koury,et al.  Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. , 1990, Science.

[39]  M. Fukuda HEMPAS disease: genetic defect of glycosylation. , 1990, Glycobiology.

[40]  S. Orkin,et al.  Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Hawley,et al.  The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. , 1994, Oncogene.

[42]  J. Bieker,et al.  A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins , 1993, Molecular and cellular biology.

[43]  S. Orkin,et al.  FOG, a Multitype Zinc Finger Protein, Acts as a Cofactor for Transcription Factor GATA-1 in Erythroid and Megakaryocytic Differentiation , 1997, Cell.

[44]  S. Orkin,et al.  Hematopoiesis: how does it happen? , 1995, Current opinion in cell biology.

[45]  D C Ward,et al.  Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Stainier,et al.  The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. , 1997, Development.

[47]  M. Reitman,et al.  An erythrocyte-specific DNA-binding factor recognizes a regulatory sequence common to all chicken globin genes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[48]  B. Calabretta,et al.  A c-myb antisense oligodeoxynucleotide inhibits normal human hematopoiesis in vitro. , 1988, Science.

[49]  J. D. Engel,et al.  Activity and tissue-specific expression of the transcription factor NF-E1 multigene family. , 1990, Genes & development.

[50]  G. Keller,et al.  Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. , 1991, Development.

[51]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[52]  M. Ohki,et al.  t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Stuart H. Orkin,et al.  An early haematopoietic defect in mice lacking the transcription factor GATA-2 , 1994, Nature.

[54]  L. Zon,et al.  Ventral expression of GATA-1 and GATA-2 in the Xenopus embryo defines induction of hematopoietic mesoderm. , 1994, Developmental biology.

[55]  A. Amsterdam,et al.  Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. , 1996, Genes & development.

[56]  T. Graf,et al.  GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. , 1995, Genes & development.

[57]  S. Orkin,et al.  Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster , 1982, Nature.

[58]  G. Felsenfeld,et al.  trans-Activation of a globin promoter in nonerythroid cells , 1991, Molecular and cellular biology.

[59]  J. Visvader,et al.  SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. , 1992, Oncogene.

[60]  C. Begley,et al.  Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. D. Engel,et al.  Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. , 1993, Genes & development.

[62]  T. Rabbitts,et al.  Chromosomal translocations in human cancer , 1994, Nature.

[63]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[64]  J. Jordan,et al.  The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis , 1994 .

[65]  W. Vainchenker,et al.  Megakaryocytic and erythrocytic lineages share specific transcription factors , 1990, Nature.

[66]  T. Waldmann,et al.  The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Y Fujiwara,et al.  Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[68]  E. Knapik,et al.  A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. , 1996, Development.

[69]  Shih-Feng Tsai,et al.  Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells , 1989, Nature.

[70]  S. Orkin,et al.  Isolation and characterization of the cDNA encoding BKLF/TEF-2, a major CACCC-box-binding protein in erythroid cells and selected other cells , 1996, Molecular and cellular biology.

[71]  A. Nienhuis,et al.  Tandem AP-1-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. , 1990, Genes & development.

[72]  S. Orkin,et al.  GATA transcription factors: key regulators of hematopoiesis. , 1995, Experimental hematology.

[73]  J. Postlethwait,et al.  Centromere-linkage analysis and consolidation of the zebrafish genetic map. , 1996, Genetics.

[74]  V. D’Agati,et al.  Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. , 1996, Genes & development.

[75]  J. Coligan,et al.  The SCL gene is formed from a transcriptionally complex locus , 1990, Molecular and cellular biology.

[76]  R. Ho,et al.  Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors , 1990, Nature.

[77]  H. Lodish,et al.  Expression cloning of the murine erythropoietin receptor , 1989, Cell.

[78]  S. Orkin,et al.  Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1 , 1991, Nature.

[79]  J. D. Engel,et al.  Dynamics of GATA transcription factor expression during erythroid differentiation. , 1993, Blood.

[80]  L. Jurata,et al.  Nuclear LIM interactor, a rhombotin and LIM homeodomain interacting protein, is expressed early in neuronal development. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[81]  C. Nüsslein-Volhard,et al.  Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate , 1994, Current Biology.

[82]  G. Keller,et al.  Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. , 1994, Genes & development.

[83]  Stuart H. Orkin,et al.  Expression of an erythroid transcription factor in megakaryocytic and mast cell lineages , 1990, Nature.

[84]  T. Graf,et al.  Chicken “erythroid” cells transformed by the Gag-Myb-Ets-encoding E26 leukemia virus are multipotent , 1992, Cell.

[85]  S. Orkin,et al.  Complexity of the erythroid transcription factor NF-E2 as revealed by gene targeting of the mouse p18 NF-E2 locus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[86]  M. Moore,et al.  Ontogeny of the Haemopoietic System: Yolk Sac Origin of In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo * , 1970, British journal of haematology.

[87]  J. Palis,et al.  Initiation of murine embryonic erythropoiesis: a spatial analysis. , 1997, Blood.

[88]  F. Grosveld,et al.  Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. , 1989, Nucleic acids research.

[89]  S. Rowan,et al.  Retroviral integration within the Fli-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  J. Visvader,et al.  Differential expression of the LYL, SCL and E2A helix-loop-helix genes within the hemopoietic system. , 1991, Oncogene.

[91]  R. Lehmann,et al.  From screens to genes: prospects for insertional mutagenesis in zebrafish. , 1996, Genes & development.

[92]  Rudolf Jaenisch,et al.  Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor , 1995, Cell.

[93]  T. Rabbitts,et al.  Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[94]  C. Begley,et al.  The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. , 1996, The EMBO journal.

[95]  L. Robb Hematopoiesis: Origin pinned down at last? , 1997, Current Biology.

[96]  C. Wijmenga,et al.  Failure of Embryonic Hematopoiesis andLethal Hemorrhages in Mouse Embryos Heterozygousfor a Knocked-In Leukemia Gene CBFB–MYH11 , 1996, Cell.

[97]  S. Orkin,et al.  Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line , 1997, Molecular and cellular biology.

[98]  M. Marín‐Padilla,et al.  Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1-ETO fusion gene , 1997, Nature Genetics.

[99]  S. Swerdlow,et al.  A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis , 1991, Cell.

[100]  S. Orkin,et al.  Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. , 1990, Genes & development.

[101]  D. Ransom,et al.  Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Orkin,et al.  Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[103]  S. Orkin,et al.  Silencing of human fetal globin expression is impaired in the absence of the adult beta-globin gene activator protein EKLF. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Yoshiaki Ito,et al.  Molecular Cloning and Characterization of PEBP2β, the Heterodimeric Partner of a Novel Drosophila runt-Related DNA Binding Protein PEBP2α , 1993 .

[105]  T. Townes,et al.  Cloning and functional characterization of LCR-F1: a bZIP transcription factor that activates erythroid-specific, human globin gene expression. , 1994, Nucleic acids research.

[106]  M. Wiles,et al.  Hematopoietic commitment during embryonic stem cell differentiation in culture. , 1993, Molecular and cellular biology.

[107]  K. Kataoka,et al.  Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. , 1993, Oncogene.

[108]  S. Orkin Globin gene regulation and switching: Circa 1990 , 1990, Cell.

[109]  J. Visvader,et al.  Molecular cloning and chromosomal localization of the murine homolog of the human helix-loop-helix gene SCL. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Y. Kan,et al.  Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[111]  J. Visvader,et al.  GATA‐1 but not SCL induces megakaryocytic differentiation in an early myeloid line. , 1992, The EMBO journal.

[112]  Paul Tempst,et al.  Erythroid transcription factor NF-E2 is a haematopoietic-specific basic–leucine zipper protein , 1993, Nature.

[113]  L. Zon,et al.  Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. , 1995, Development.

[114]  M. Evans,et al.  The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development , 1994, Cell.

[115]  D A Kane,et al.  Characterization of zebrafish mutants with defects in embryonic hematopoiesis. , 1996, Development.

[116]  F. Alt,et al.  The CBFβ Subunit Is Essential for CBFα2 (AML1) Function In Vivo , 1996, Cell.

[117]  J. Postlethwait,et al.  A genetic linkage map for the zebrafish. , 1994, Science.

[118]  P. Leder,et al.  Tal‐1 induces T cell acute lymphoblastic leukemia accelerated by casein kinase IIalpha. , 1996, The EMBO journal.

[119]  F. Alt,et al.  The T Cell Leukemia Oncoprotein SCL/tal-1 Is Essential for Development of All Hematopoietic Lineages , 1996, Cell.

[120]  D. Metcalf HAEMOPOIETIC GROWTH FACTORS 1 , 1989, The Lancet.

[121]  L. Pardanaud,et al.  Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. , 1989, Development.

[122]  T. M. Dexter,et al.  Suppression of apoptosis allows differentiation and development of a multipotent hemopoietic cell line in the absence of added growth factors , 1993, Cell.

[123]  Ken Itoh,et al.  Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins , 1994, Nature.

[124]  M. Luther,et al.  Involvement of pp60c-src with two major signaling pathways in human breast cancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[125]  J. Downing,et al.  AML1, the Target of Multiple Chromosomal Translocations in Human Leukemia, Is Essential for Normal Fetal Liver Hematopoiesis , 1996, Cell.

[126]  S. Orkin,et al.  Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer , 1995, Molecular and cellular biology.

[127]  J. Burns,et al.  Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. , 1994, Science.

[128]  W. Ludwig,et al.  TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). , 1991, Oncogene.

[129]  M. Clarke,et al.  Constitutive expression of a c-myb cDNA blocks Friend murine erythroleukemia cell differentiation. , 1988, Molecular and cellular biology.

[130]  S. Orkin,et al.  Regulation of globin gene expression in erythroid cells. , 1995, European journal of biochemistry.

[131]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[132]  S. Orkin,et al.  The mutation and polymorphism of the human beta-globin gene and its surrounding DNA. , 1984, Annual review of genetics.

[133]  M. Kastan,et al.  Nuclear oncoprotein expression as a function of lineage, differentiation stage, and proliferative status of normal human hematopoietic cells. , 1989, Blood.

[134]  David Baltimore,et al.  A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins , 1989, Cell.

[135]  Stuart H. Orkin,et al.  Transcription Factors and Hematopoietic Development (*) , 1995, The Journal of Biological Chemistry.

[136]  H. Lodish,et al.  Interaction of the erythropoietin and stem-cell-factor receptors , 1995, Nature.

[137]  A. Nienhuis,et al.  Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. , 1990, Nucleic acids research.

[138]  F. Grosveld,et al.  The role of EKLF in human beta-globin gene competition. , 1996, Genes & development.

[139]  Y. Kan,et al.  Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast. , 1993, Proceedings of the National Academy of Sciences of the United States of America.